

PROGRAMS FOR THE COSMAC ELF INTERPRETERS

Paul C . Moews

List of Sections

. 1 . Introduction 3
. 2 . A Demonstration Interpreter 5

. 3 The CHIP-8 Language 10
4 . Hardware Differences between 1802 Computers 13

. 5 . A Complete Elf CHIP-8 Interpreter 14
. 6 . Extending the CHIP-8 Instruction Set 22

7.Appendix . 28

List of Programs

Machine Code

. 1 . Demonstration Interpreter 5
. 2 . Complete CHIP-8 Interpreter 15

. 3 . Additional Skip Instructions 22
4 . Multiply. Divide and 16 Bit Display Instructions 23

. 5 . Six Bit ASCII Symbols 25

Interpretive Code

. 1 . Addition (Demonstration Interpreter) 6
2 . Subroutine Use (Demonstration Interpreter) 6
3 . Addition Problems (Demonstration Interpreter) 7

. 4 . Addition Problems (Full Interpreter) 11
. 5 . Display ASCII Characters (Full Interpreter) 27

Copyright @ 1979 by Paul C . Moews
All rights reserved

Published March. 1979 by Paul C . Moews

Printed by Parousia Press. Stons. Connecticut

Introduction

This booklet's purpose is to explain the construction and operation of
an interpreter for the COSMAC 1802 "ELF". It assumes that the reader
has some knowledge of the 1802 instruction set and is able to write simple
machine language programs. Mnemonics are not provided because most Elf
owners do not have access to assemblers and must work directly in machine
language. Instead, programs are explained in a documented, step-by-step
fashion, that it is hoped will make the concepts involved easy to follow.

The interpretive language described is "CHIP-8", the language used by
RCA Corporation in its "COSMAC VIP" computer. CHIP-8 is a simple
language consisting of about 30 instructions. RCA's interpreter is elegant
and well thought out; once understood it is easily changed and modified.

This booklet contains five sections; in the first section a simple demon-
stration interpreter is introduced. This demonstration interpreter runs in
the basic %K "Elf" and its instructions are a subset of the full CHIP-8
instruction set. While simple, the demonstration interpreter employs
methods similar to those used in the full interpreter.

Further sections discuss the full CHIP-8 instruction set, hardware
differences between the "VIP" and the "ELF", and provide a listing of a
complete ELF interpreter together with suggestions for irriplementing it
on various machines. The final section discusses the extension of the
CHIP-8 instruction set. Examples are provided for multiply and divide
instructions together with an instruction which displays characters for the
64 six bit ASCII symbols.

I should like to thank RCA Corporation for permission to write about
CHIP-8 and to modify it for the Elf. However RCA is not responsible for
any of the material in this booklet. The programs described have been
thoroughly tested on a number of versions of the COSMAC "ELF" as
described in the Popular Electronics articles and are believed to be reliable
but there is, of course, still the possibility that they contain unexpected
errors. This kind of interpreter is rather hardware dependent and changes
in input/output lines or in the use of flag lines will cause failures. An
attempt was made to provide sufficient documentation so that the user
can make the changes necessary to implement CHIP-8 on a variety of
machines.

A Demonstration Interpreter

The surprising power of computers is due to the
development of languages which organize program-
ming into different levels of complexity. Perhaps
the simplest way to organize programming with a
language is to use an interpreter. One can consider
an interpreter to be a program that converts the
basic instruction set to a new language, a set of in-
structions that better suits the programmer. Alter-
natively an interpreter can be thought of as a pro-
gram with a control section and a number of sub-
routines, the new language now instructs the inter-
preter as to which subroutines to call and in which
order. The subroutines perform "tasks" which are
more complicated than those performed by a
single machine code operation. The ubiquitous
basic interpreter is a good example.

RCA's CHIP-8 language is an interpretive one
and it converts the 94 machine language instruc-
tions of the 1802 microprocessor to a new set of
about 30 more powerful and convenient instruc-
tions. Each type of statement in the new language
is implemented by a machine code subroutine
which carries out the desired operation. It differs
from a basic interpreter in that most of the opera-
tions carried out by the subroutines are small ones,
consisting of only a few machine code instructions,
and the language is therefore a simple one without
many of the features of basic. However quite
powerful programs can be written with a few hun-
dred CHIP-8 instructions.

This section introduces a version of CHIP-8 for
the 1/4K Elf. Ten of the instructions are a subset
of the full CHIP-8 set and are identical to those
in CHIP-8. Two additional instructions, read a
byte from the keyboard and display a byte on the
hex display, have no exact counterparts in the
CHIP-8 set.

CHIP-8 instructions consist of four hex digits.
The first hex digit determines the type of instruc-
tion; there are therefore 16 basic kinds of CHIP-8
instructions. The next 3 hex digits are used in
several different ways. They can be used to specify
a memory location, and as there are 3 hex digits
available, any memory location from 000 to FFF
can be specified. In the demonstration interpreter
only the two least significant hex digits are needed
for this purpose because it is necessary to address
only a single page of memory.

A basic feature of CHIP-8 is that it provides 16
one byte variables, designated VO through VF.
Thus a single hex digit can be used to specify one
of these variables. In many of the CHIP-8 instruc-

tions the second most significant hex digit is used
for this purpose, leaving the last two hex digits
available for other uses. In arithmetic operations
the two variables to be added, etc. are specified by
the second and third hex digit leaving the last hex
digit to designate the type of arithmetic operation
to carry out.

Before beginning a discussion of how the inter-
preter works, it is necessary to have an understand-
ing of the language and its use. The instructions
available are shown in Table 1.

Table 1
Demonstration Interpreter Instructions

OOMM

1 OMM

20MM

DXKK

FXOO

do a machine code subroutine at loca-
tion MM (The machine code subroutine
must end with D4)
go to MM; control is transferred to loca-
tion MM in the interpretive code
do .an interpreter subroutine at location
MM (The interpreter subroutine must
end with 009E)
skip if VX # KK; the next interpreter in-
struction is skipped over if VX does not
equal KK
set VX = KK; variable X is made equal
to KK
set VX = VY; variable X is made equal
to variable Y
set VX = VX or VY; variable X is made
equal to the result of VX logically ored
against VY (Note that VF is changed)
set VX = VX and VY; variable X is made
equal to the result of VX logically anded
against VY (Note that VF is changed)
set VX = VX + VY; variable X is made
equal to the sum of VX and VY (Note
that VF becomes 00 if the sum is less
than or equal to F F and 01 if the sum is
greater than FF)
set VX = VX - VY; variable X is made
equal to the difference between VX and
VY (Note that VF becomes 00 if VX is
less than VY and 01 if VX is greater
than or equal to VY)
display VX on the hex display, KK in-
dicates the length of a pause for display
set VX equal to the switch byte; waits
for the input button to be pushed and
released

An easy way to see how these instructions are
used is to illustrate them with a simple program.
The interpreter is listed at the end of the chapter
and can be used to run these sample programs.

To start let's look at the following program. It
reads in 2 switch bytes, displays them, adds them,
and displays the result. If overflow occurs, that is
if the sum of the bytes is greater than FF, EE is
also displayed. The program uses only 10 inter-
preter instructions. (The first instruction 3071 is
actually machine code and transfers control on
entry to the interpreter; it is not part of the inter-
pretive code.) The interpreter has a program coun-
ter for interpretive code (R(5)) which is set on en-
try to the address of the first instruction (M(O0 02)).
The f i s t interpretive language instruction is 63EE
which sets variable number 3 equal to EE.

Add.
00
02
04

Interpretive Addition Program

Code Notes
3.07 1 entry to interpreter
63EE set V3 equal to EE
F400 set V4 equal to switch byte,

waits for in on, off
D4FF display V4 on hex display for

about 1.8 seconds
F500 set V5 equal to switch byte
D5FF display V5 on hex display
8454 set V4 equal to V4 + V5
D4FF display V4, now the sum of

v 4 + v 5
4F01 skip next instruction if VF

01, remember VF will be
set to 01 by the 8454 instruc-
tion if overflow occurs

D3FF display V3 (V3 was set equal
to EE) this instruction is
skipped if VF is anything
but 01

1004 go back to instruction 04 to
wait for next number

The above program illustrates most of the
demonstration interpreter instructions, an impor-
tant exception is the interpreter subroutine call.
Unlike the SEP register technique used in simple
machine code programs, interpreter subroutines do
not have to return to the main program but can be
called from other subroutines. A stack is employed
to store the return address when a subroutine call
is made and successive calls to subroutines, with-

out returns, push the stack further down. In the
demonstration interpreter the stack pointer, R(2),
points to the last location used and is pushed
down one before a new byte is added to the stack.
Each time a return from a subroutine occurs the
stack pointer is incremented by one.

The next program is a simple illustration of the
use of an interpreter subroutine. A switch byte is
entered and displayed. It is then counted down by
three's until underflow occurs. A subroutine is
used to implement the counting down by three.

Program to Illustrate Subroutine Use

Add. Code Notes
00 3071 entry to interpreter
02 F500 set V5 equal to switch byte,

waits for in on, off
04 D5FF display V5 on hex display for

'about 1.8 seconds
06 200A call interpreter subroutine at

memory location OA
08 1002 on return from subroutine go

to location 02 to read another
switch byte

- - begin interpretive subroutine
OA 6603 set V6 equal to 03
OC 8565 set V5 equal to V5 - V6
OE D540 display V5 for ca. 0.4 seconds
10 4F01 skip next instruction if under-

flow occurs during the sub-
traction, VF equals 00 on
underflow

12 lOOC transfer to location OC to
subtract three more

14 009E return from subroutine

In the a b v e program, the call to the subroutine
uses one stack position to store the return address.
When the interpreter is entered the stack pointer is
set to location 71. On calling the subroutine it is
decremented by one, to location 70, and 08, the
location the interpreter should execute on return
from the subroutine, is stored there. If we examine
location 70 after running this program 08 will be
found stored there. Two additional stack locations,
6E and 6F are used by the 8565 instruction, these
locations become F5 and D3 respectively. An ex-
planation of why this occurs is given in the demon-
stration interpreter listing.

The interpreter also includes an instruction,
OOMM, which executes a machine code subroutine

at address MM. This is easily accomplished; the
control section of the interpreter treats the machine
code subroutine as if it were one of the subroutines
written to execute a CHIP-8 instruction. All the
subroutines which execute CHIP-8 instructions
end with a D4 byte; this returns control to the
calling section of the interpreter. As a result
machine code subroutines must also end with a
D4 byte.

The following program poses simple addition
problems and illustrates most of the demonstra-
tion interpreter instructions. It contains a machine
language subroutine which generates two random
numbers when the in button is pushed. On entry,
the program displays AA and the Q light comes on.
When the input button is pressed a simple addition
problem (base 10) is presented: for example 17 AD
(for and) 32 EO (for equals) may be displayed. If
00 is entered the problem is shown again, if the
correct answer is entered it is displayed followed
by AA. However if an incorrect answer is entered
EE is shown followed by the correct answer. The
program requires 36 interpreter instructions and a
machine language subroutine of 25 bytes. An in-
terpreter subroutine is used to convert a number
from hex to decimal for display and a machine
language subroutine is used to generate two ran-
dom numbers in VD and VE. The displayed num-
bers are all less than 99 (base 10) to accommodate
the hex display and the simple hex to decimal con-
version routine which fails for numbers greater or
equal to 100 (base 10).

call the interpreter subroutine
which converts from hex to
decimal, answer is returned in
VA and VB is changed
save answer on return from
subroutine by setting VC
equal to VA
set VB equal to VE, one of
the random numbers
call subroutine to make VA
the decimal equivalent of VB
display VA, first random num-
ber (base 10)
display V2 (AD)
set VB equal to VE the other
random number
call subroutine to make VA
the decimal equivalent of VB
display VA, second random
number
display VO (EO)
make V6 the entered byte
skip the next instruction if
V6 is equal to 00
here only if V6 is 00, back to
16 to repeat display
display V6, the entered byte
set V6 equal to V6 - VC, VC
is correct answer (base 10)
skip next instruction unless
V6 equals 00, i.e. skip on
wrong answer
transfer to OA to show AA if
answer is correct
display V 1 (EE)
display VC, correct answer
transfer to OC to begin next
problem
end of main, begin hex to
decimal conversion subrou-
tine, subroutine adds 06 to
VB for every time OA occurs,
argument is passed in VB and
returned in VA
set VA equal to VB
set V9 equal to 06
set V8 equal to OA
set VB equal to VB - V8, i.e.
subtract OA from VB

DAFF

D AFF

DOFF
F600
4600

Program for Addition Problems

Add. Code Notes
00 3071 entry to interpreter
02 60E0 set VO equal to EO
04 61EE set V1 equal to EE

1 OOA

DlFF
DCFF
1 ow

06 62AD set V2 equal to AD
08 63AA set V3 equal to AA
OA D300 display V3 (AA) on the dis-

play but no delay for display
OC 004A call machine language subrou-

tine which generates random
numbers in VD and VE when
in is pushed

OE 8BE0 set VB equal to VE as prepa-
ration for summing the two
random numbers

10 8BD4 set VB equal to VD + VE,
sum of the two random num-
bers

42 4F00 skip next instruction if VF
equals 00, i.e, skip unless
underflow

44 009E return from subroutine on
underflow

46 8A94 set VA equal to VA + V9, i.e.
add 06 to VA

48 1040 transfer to location 40 to sub-
tract OA from VB, this is the
end of the subroutine

- - start of machine language sub-
routine, random numbers
from 1 through 50 (base 10)
are generated in VD and VE,
R(6) is used to point to VD
and VE, see the interpreter
listing for a better understand-
ing of how this routine works

4A 7B entry point, turn Q on
4B E6 make R(6) the X register
4C F8 FE A6 load the address of VE to R(6)
4F F8 33 load 5 1 (base 10) to D
51 F F 0 1 subtract 0 1 from D
53 3 2 4 F transfer to 4F if D is zero
55 3F 51 transfer to 5 1 unless in pushed
57 73 here when in pushed, store

number in VE point R(6) to
VD

58 F8 32 load 50 (base 10) to D
5A F F 0 1 subtract 01 from D
5C 32 58 transfer to 58 if D is zero
5E 37 5A transfer to 5A unless in re-

leased
60 56 store number in VD
61 7A D4 turn Q off and return, end of

program

The above program illustrates one of the weak-
nesses of CHIP-8. There is no way to pass argu-
ments to interpreter subroutines except through
the variables and we must execute a number of
variable transfer instructions to use the hex to
decimal interpreter subroutine. This weakness is
partly overcome in the full interpreter by the in-
clusion of instructions which transfer the variables
to and from memory. The full interpreter also in-
cludes an instruction which generates random num-
bers and a hex to decimal conversion routine. In
the next section this program has been rewritten
for the full interpreter.

Now let's look at the listing for the demonstra-
tion interpreter. It uses the 16 locations FO through
F F to store the 16 variables. The interpreter
examines each instruction in turn and cames out
the desired operation by calling the correct sub-
routine. It uses the following registers:

Demonstration Interpreter Register Use

R(2) stack pointer
R(3) set to address of machine code subroutine

that carries out instruction, i.e. subroutine
program counter

R(4) program counter for control section of
interpreter

R(5) program counter for interpretive code
R(6) VX pointer, points to one of 16 variables
R(7) VY pointer, points to one of 16 variables
R(C) used to point to a table of addresses

The interpreter is designed for use on a single
page of memory and will work in the basic 114 K
Elf as it stands. For expanded systems R(2), R(3),
R(4), R(5), R(6), R(7), and R(C) have to have
their high order bytes set to the page the interpre-
ter resides on. Perhaps the simplest way to do this
initialization for an expanded system is to change
the entry point of the interpreter from 71 to 68
and add the following code from locations 68
through 73 :

Add. Code Notes
68 F8 00 load page number to D, here

00 but interpreter can be on
any page

6A B2 B3 B4 initialize registers
6D B5 B6 B7 BC initialize registers
71 F8 68 A2 establish top of stack at M(68)

instead of at M(71)

Note that the stack pointer is now initialized at lo-
cation 68 instead of at location 71. Alternatively
one can place the interpreter on a higher page in
memory, do the initialization of the registers on
page 00 and then transfer control to the interpreter.
If this method is used the interpretive code can
start at location 00 and R(5).0, the address of the
first interpreter instruction, can be set to 00.

Demonstration Interpreter Listing

Add. Code Notes
71 F8 7 1 A2 establish stack pointer

F8 7A A4 R(4) will be program counter
for control section of inter-
preter

F8 02 A5 R(5) is program counter for
interpretive code, first instruc-
tion is at M(02)

D4 establish program counter for
control section

E2 make R(2) the X register, this
is the entry point for return
to control section after com-
pleting a subroutine call

45 AF load first half of instruction
and save it in R(F).O

F6 F6 F6 F6 shift right to get most signifi-
cant digit-most significant
digit determines type of in-
struction

32 98 if D is zero (type 0 instruc-
tion) we have machine code
subroutine call, transfer to lo-
cation 98

F9 A0 else or against A0 to get
address from table of sub-
routine locations (see loca-
tions A1 to AF)

AC save address in R(C).O
8F bring back instruction
F9 FO or against FO to get VX

address
A6 establish R(6) as VX pointer
05 load second half of instruc-

tion, note that R(5) is left
pointing to second half of in-
struction

F6 F6 F6 F6 shift right to get VY pointer
F9 FO or against FO to get VY

address
A7 establish R(7) as VY pointer
OC A3 pick up subroutine address

from table and point R(3) to
subroutine

D3 call subroutine to do instruc-
tion

30 7B on return from subroutine go
to 7B for next instruction

45 30 94 here for machine code sub-
routine, load address to D
and go to 94 to establish R(3)

and call subroutine, end of
control section

- begin subroutine for 6XKK
instruction

45 56 load KK to D, store in VX
D4 return to control section
- 9E through A0 is a machine

code subroutine that restores
R(5) on return from interpre-
ter subroutine

42 load return address from stack
A5 D4 restore R(5) and return
- the next 15 bytes are the sub-

routine locations
B5 BO E5 B8 i.e. go to B5 for lOMM in-
E5 9B E5 CO structions, go to BO for 20MM
E5 E5 E5 E5 instructions, etc. illegal in-
E7E5 DD structions go to E5 where

they are ignored
- subroutine for 20MM instruc-

tions
15 85 load return address to D
22 52 save on stack, push stack

down f i s t
2 5 restore R(5) so that it points

to MM
- rest of this subroutine is

shared with lOMM instruc-
tions

45 A5 load MM change R(5) to point
to new address

D4 return
- begin subroutine for 4XKK

instruction
4 5 load KK to D
E6 make R(6) the X register, the

VX pointer
F3 x'or VX against KK
32 BF return immediately if D equals

0, i.e. if VX equals KK
15 15 else increment instruction

program counter twice
D4 return
- here begin the 8XYN instruc-

tions
4 5 load advance YN to D
FA OF and off N to get ON in D
3A C8 go to C8 unless N is zero

EF D4
FO-FF -

load VY, write to VX
return
here on other 8XYN instruc-
tions, makes up FN D3 on
stack, transfers control to
stack and obeys the two in-
structions, uses R(2) as pro-
gram counter
save ON
push stack down
load D3 to D, write to stack
load ON, or against FO to get
F1, F2, F4, or F5
write to stack
make VX pointer the X
register
load VY to D
go to stack to obey FN D3
instructions
on return save result as VX
point R(6) to VF
clear D
shift DF into D and save as
VF
return
begin FXOO subroutine
Q on to indicate waiting for
byte
wait for in on
wait for in off
make VX pointer the X
register
switch byte to VX
turn Q off
advance instruction counter,
return-also used for illegal
instructions
begin DXKK subroutine
make VX pointer the X
register
display VX
load KK to R(F). 1
decrement R(F), load R(F).l
go to EB unless D is zero,
delay loop
return-end of interpreter
locations where the 16 inter-
preter variables are stored

The CHIP-8 Language

This section contains a brief discussion of the
CHIP-8 language and a list of the available instruc-
tions. Further information about RCA's VIP
machine and about CHIP-8 can be found in two
articles by Joseph Weisbecker ("COSMAC VIP, the
RCA Fun Machine", in the August, 1977 Byte
magazine p. 30, and "An Easy Programming Sys-
tem", in the December, 1978 Byte magazine p. 108)
and in RCA's literature. The full CHIP-8 instruction
set is listed in the table at the end of this chapter.

Many of the basic features of the CHIP-8 lan-
guage are explained and illustrated in section 2 and
the demonstration interpreter contains ten instruc-
tions which are identical to those in the full CHIP-8
set. The complete language is designed for use with
low resolution graphics and the display subroutine
is the longest and most complex of the subroutines
in the interpreter. A number of TV games have
been written with CHIP-8 and it is well suited for
this purpose. The display instruction is used in
conjunction with a memory pointer and the CHIP-8
variables and has the form DXYN. The values of
VX and VY indicate where on the video display to
show information, and the value of N indicates
how many bytes to display. A memory pointer,
called I, gives the starting address of the informa-
tion to be displayed and must be set by other in-
structions. Positions in the display field are deter-
mined by a rectangular coordinate system with the
origin in the upper left comer; 64 horizontal posi-
tions, designated by VX and 3 2 vertical positions
designated by VY, are available. The bytes to be
displayed are exclusively ored against the display
field; an important feature for TV games. Portions
of memory bytes which extend beyond the display
field on the right or at the bottom are truncated,
there is no wrap around.

Another important feature of the language is
the 16 one byte variables, VO through VF, which
are held in random access memory. Two of these
variables VO and VF are used for special purposes.
VO is used in a kind of computed go to statement,
the BMMM instruction. Control is transferred to
location MMM to which has been added thevalue
of VO. As in the demonstration interpreter, VF is
used to indicate overflow in arithmetic operations.
I t is also used to indicate when a display instruc-
tion attempts to show a position which is already
being displayed. As the display instruction exclu-
sively or's the data to be displayed against the dis-
play field, such an attempt turns off the displayed
position. VF is set to 01 to indicate this occur-

rence. This serves as a simple way t o determine if a
missile has struck a target in a TV game.

A third important feature of CHIP-8, already
mentioned in the discussion of the display routine,
is the memory pointer, I. The memory pointer can
be set both directly and indirectly; besides its use
as a display pointer, it also serves as a pointer for
transferring variables t o and from memory.

The full CHIP-8 instruction set has six skip in-
structions all of which follow the principle of the
skip instruction included in the demonstration
interpreter. That is, the next interpreter instruc-
tion is skipped over if on testing a condition it is
found t o be true.

The instructions which have 8 as the first hexa-
decimal digit perform arithmetic and logic opera-
tions and are all included in the demonstration
interpreter. Note again that V F is used t o indicate
overflow and that the value of V F is changed by
8XY1, 8XY2, 8XY4, and 8XY5 instructions.

A number of instructions which were not in-
cluded in the demonstration interpreter are the
"F" instructions. Several of these are used in con-
junction with the memory pointer. F o r example
the FX29 instruction points I at a 5 byte memory
pattern which corresponds to the least significant
hex digit of VX. If V7 were 38 and a F729 in-
struction were executed I would point t o the first
byte of the series FO, 90, FO, 90, FO (a pattern for
the symbol "8") and a DXYS instruction would
show an "8" on the display. The FX33 instruction
is a binary to decimal conversion routine. The
value of VX is converted t o a 3 digit decimal num-
ber with the hundreds digit stored at location I,
the tens digit a t location I + 1 , and the units digit
at location I + 2. The FX55 and FX65 instructions
use the memory pointer to transfer variables t o
memory and to transfer values from memory t o
the variables, respectively.

Other "F" instructions include a settable tone
generator (FX18) (see the section on Hardware
Differences), an instruction t o set a timer (FXlS) ,
an instruction to read the timer (FX07), and an
instruction t o read the keyboard (FXOA). An
additional "F" instruction has been added for the
Elf; FX75, which displays the value of VX on the
hex display.

Other useful instructions which were not present
in the demonstration interpreter include a random
number generator (CXKK where KK is anded
against a random byte before being transferred t o
VX), and an instruction which adds a byte t o one
of the variables, 7XKK. Two of the CHIP-8 in-

structions OOEO (erase the display) and OOEE
(return from a CHIP-8 subroutine) are implemented
as machine code subroutines resident in the inter-
preter itself. They are therefore dependent upon
the page where CHIP-8 is located and will have t o
be changed if CHIP-8 is relocated. This also is the
reason that the return from a subroutine is 009E
in the demonstration interpreter and OOEE in the
full CHIP-8 interpreter.

T o illustrate the use of the full instruction set,
let's rewrite one of the programs that used the
demonstration interpreter, the one involving addi-
tion problems. The following program constructs
simple addition problems using two randomly
chosen numbers between 0 and 127. On entry t o the
program a problem is presented, e.g. 076 + 093 = ? .
An answer is entered through the keyboard one
digit a t a time (i.e. 1, 6 , 3) and when the last digit
is entered 163 is displayed. A C follows the
entered number if i t is correct and an E if i t is
incorrect. In the case of an incorrect answer the
correct answer is also shown. Another problem is
given when any key is entered. The program con-
sists of 6 7 CHIP-8 instructions and also uses 3 2
bytes for constants and work space.

Program for Addition Problems

Add. Code Notes
0200 OOEO erase display
- - first set u p problems and

answer
0202 CD7F VD equals random number
0204 CE7F VE equals random number
0206 8CDO VC = VD
0208 8CE4 VC = VD + VE (the answer)

A288
7A07
DABS
A2A2

next convert t o decimal and
display the problem
point I t o work space
set VA = 00, display pointer
set VB = 00, display pointer
M(I) equals 3 digit decimal
equivalent of VD
VO, V1, V 2 equals M(1)
call CHIP-8 subroutine (dis-
plays 3 digit number in VO,
V1, and V2)
point I t o + pattern
VA = VA+ 07, display pointer
display + pattern
point I t o work space

F265
2276
A28E
7A07
DAB4
A292
6A 18
6B08
D ABF
-

FOOA

F 1 OA
F20A
DABF
6A15
2276

VA = VA+ 08, display pointer
M(I) equals 3 digit decimal
equivalent of VE
VO, V1, V2 equals M(1)
call subroutine to display VE
point I to = pattern
VA = VA + 07, display pointer
display = pattern
point I to ? pattern
set VA = 18, display pointer
set VB = 08, display pointer
display ? pattern
now read in possible answer,
display it
VO = least significant digit of
switch byte
V1 = switch byte (LSD)
V2 = switch byte (LSD)
display ? pattern (erases it)
set VA = 15, display pointer
call subroutine to display
entered answer
now compare answers, right
to 025C, wrong to 0262
point I to work space
VO, V1, V2 to memory
point I to work space
M(I) equals 3 digit decimal
equivalent of answer
VO, V1, V2-correct answer
V3, V4, V5-entered answer
v 3 = v 3 -vo
skip if V3 = 00
go to 0262, error
v 4 = v 4 - v 1
skip if V4 = 00
go to 0262, error
v 5 = v 5 - v 2
skip if V5 = 00
go to 0262, error
here if answer correct
set V6 = OC
set tone duration (reward)
go to 026A
here if answer wrong
set VA = 1 5, display pointer

660E
6A26
6B08
F629
DAB5
FOOA
1200

F029
DAB5
7A05
F129
DAB5
7A05
F229
DAB5
OOEE
-
2020
F820
2000
OOFO
OOFO
FFFF
03 03
03FF
FFCO
coco
coco
OOCO
COO0

set VB = 10, display pointer
call subroutine to display
correct answer
V6 = OE
VA = 26, display pointer
VB = 08, display pointer
point I to C or E pattern
display C or E
wait for any input
to 0200 for next problem
subroutine to display 3 digit
number held in VO, V1, V2
point I to pattern for VO
display it
VA = VA + 05, display pointer
point I to pattern for V1
display it
VA = VA + 05, display pointer
point I to pattern for V2
display it
return from subroutine
patterns and work space
pattern for + sign

pattern for = sign

pattern for ? sign

work space

Table 2

Full Interpreter Instructions

OMMM do a machine code subroutine at loca-
tion OMMM (The machine code subrou-
tine must end with D4)

lMMM go to OMMM; control is transferred to
location OMMM in the interpretive code

2MMM do an interpreter subroutine at location

AMMM

BMMM

CXKK

DXYN

OMMM (the interpreter subroutine must
end with OOEE)
skip if VX = KK; the next interpreter in-
struction is skipped over if VX equals KK
skip if VX # KK; the next interpreter in-
struction is skipped over if VX does not
equal KK
skip if VX = VY; the next interpreter in-
struction is skipped over if VX equals
VY (see 9XYO)
set VX = KK; variable X is made equal
t o KK
set VX = VX + KK; add KK t o variable X
set VX = VY; variable X is made equal
t o variable Y
set VX = VX or VY; variable X is made
equal to the result of VX logically ored
against VY (Note that V F is changed)
set VX = VX and VY; variable X ismade
equal to the result of VX logically anded
against VY (Note that V F is changed)
set VX = VX + VY; variable X is made
equal to the sum of VX and VY (Note
that VF becomes 0 0 if the sum is less
than or equal t o F F and 01 if the sum is
greater than F F)
set VX = VX - VY; variable X is made
equal to the difference between VX and
VY (Note that V F becomes 0 0 if VX is
less than VY and 01 if VX is greater
than or equal t o VY)
skip if VX # VY; the next interpreter in-
struction is skipped over if VX does not
equal VY (see 5XYO)
point I at OMMM; the memory pointer
is set to OMMM
go to OMMM + VO, the value of VO is
added t o OMMM and control is trans-
ferred t o the resulting location
set VX to a random byte; random byte
is anded against KK first
display N byte pattern at coordinates
VX, VY; I (memory pointer) gives
starting address of locations to be dis-
played. The displayed locations are
exclusively ored against display field.
VF becomes 01 if some of the display
field is already set, 0 0 if i t is not .
skip if VX = hex key; skip next instruc-
tion if the least significant digit of VX

EXAl

FX07

FXO A

FX75

OOEO

equals the least significant digit of the
key board
skip if VX # hex key; skip next instruc-
tion if the least significant digit of VX
does not equal the least significant digit
of the keyboard
set VX t o the value of the timer; timer
is counted down in interrupt routine
set VX = hex key; sets VX equal t o the
least significant digit of the keyboard,
waits for in on, off
set timer to VX; timer is counted down
in interrupt routine so 01 is ca. 1/60 t h
second
set tone duration t o VX; turns Q on for
duration specified by VX, 01 is ca. 1/60
th second
set I t o I + VX; add the value of VX t o
the memory pointer
point I to pattern for least significant
digit of VX
convert VX to decimal; 3 decimal digits
are stored at M(I), M(I + I), and M(I + 2),
I does not change
save VO through VX in memory at loca-
tions specified by I, VO at M(I), V1 at
M(I + l) , etc., I becomes I + X + 1
transfer memory locations specified by I
to variables VO through VX, VO becomes
M(I), V1 becomes M(I + I) , etc. I be-
c o m e s I + X + 1
display the value of VX on the hex
display
erase the display (actually a machine
language subroutine resident in the
interpreter)

Hardware Differences between 1802 Computers

The most important difference between the
various versions of the COSMAC ELF and the
COSMAC VIP is the keyboard. The COSMAC VIP
has a hex keyboard; however it is not connected t o
an input port. Instead the least significant 4 bits of
a bus output byte (Out 2 ,621 are decoded and the
16 output lines connected to the corresponding
hex keys. Each key is connected t o one of the flag
lines (EF3). T o determine which key is depressed
requires a software routine which scans the key-
board. Scanning is done by repeatedly outputing
the 16 possible least significant hex digits and
examining the flag line to see which digits cause i t

to be pulled low. Debouncing is also carried out
within the software routines; there is an approxi-
mately 111 5 second software delay to debounce
both the opening and closing of a keyboard switch.

COSMAC ELF computers on the other hand
are variable in design and have a variety of ways to
input information from keyboards or switches.
Indeed the September, 1976 issue of Popular
Electronics describes a way to connect a scanned
hex keyboard, much like that contained in the
VIP, to the ELF. However most of the commer-
cially available ELFs (e.g. Super Elf and Elf-2)
have latched hex keyboards with roll-over. The
latches are connected to an input port and one can
examine the contents of these latches at any time
under software control. A hardware debounced
button is connected to one of the external flags
(EF4). This button (the in button) can be used as
a device to indicate to a software routine that we
wish the switch latches read. An additional feature
of the Elf is the ability to carry out direct memory
access input from the keyboard by depressing the
in button when the computer is in the load mode.
This feature is not required by the VIP which has
an operating system in ROM.

These different methods in inputting informa-
tion from the keyboard have different advantages
and disadvantages, neither is really totally satisfac-
tory. The VIP's keyboard has one significant ad-
vantage. All of the keys are connected directly to a
flag line and it is possible to tell, with software,
when a key is being depressed and if so which one.
A quick response to keyboard entry is therefore
possible and this property is particularly desirable
for TV games. It also makes possible an operating
system which enters bytes directly from the key-
board to memory without the necessity of pushing
an in button. These features are more difficult
with a roll-over latched keyboard like that found
in many ELFs. Entered bytes can only be read
from the latches and there is no way, with soft-
ware, to determine when a single key is repeatedly
entered; that is we could never determine if B, B,
B, B was entered because the contents of the
latches would never change. This difficulty could,
of course, be overcome with some simple hardware
changes to the ELF.

The advantage of the ELF keyboard is that the
contents of the keyboard latches can be transferred
directly to memory by instituting a direct memory
access cyle. This, in fact, is what makes the ELF a
viable machine without read only memory. HOW-
ever the ELF would be easier to use if the contents

of the keyboard latches were displayed and if a
signal were provided which made i t unnecessary to
push the in button.

Another hardware difference is in the treatment
of the Q line. In the VIP the Q line is attached to a
simple oscillator, and this in turn can be connected
to a speaker. Hence in the VIP when the Q line is
turned on, a tone is heard in the loudspeaker. This
feature can be added to an Elf without much
difficulty. It should perhaps be mentioned that the
VIP has room on board for one input and one
output port, the output port uses o u t 3 (63), and
the input port uses in-3 (6B).

Rather than attempt to change the ELF to a
VIP by making hardware changes, this booklet
accepts the ELF's as they are and makes the soft-
ware changes in CHIP-8 to accommodate ELF's.
Unfortunately ELF's are not built to a standard
design like the VIP and it is therefore difficult to
write software which will suit all ELF users. To
compensate for this a detailed listing of the inter-
preter is presented in the next section. It is hoped
that sufficient information is given so that those
with ELF's which differ from those commercially
available will be able to modify the interpreter to
suit their machines.

A Complete Elf CHIP-8 Interpreter

This section provides a listing and a discussion
of a version of CHIP-8 for COSMAC ELF's. The
main listing of the interpreter is designed for a 4K
Elf with memory pages 00 through OF, the con-
figuration most commonly used by the commer-
cially available ELF's. It is also possible to use
CHIP-8 in the 1 114 K ELF's described in the
articles in Popular Electronics, but to do so is very
tedious unless the switches are replaced with a
latched decoded keyboard. This machine has
memory pages 00, 04, 05, 06, and 07 and a version
of CHIP-8 for such a machine will also be described.
The necessary changes to CHIP-8 will be discussed
in the notes included with the full interpreter
listing. Similar changes are required when CHIP-8
is relocated in memory and this example may aid
those with other styles of machines.

The first consideration in modifying CHIP-8 for
use on the ELF is page use. The following page use
was chosen for the 4K Elf's with memory pages 00
through OF:

Page
00
0 1

Use
first half of interpreter
second half of interpreter

02 - OD reserved for interpretive code
OE (first half) character table and interrupt

routine
OE (second half) variables, work space and

stack
OF display page

This choice of page usage maximizes the similarity
of ELF CHIP-8 and VIP CHIP-8. However it is
possible to relocate the code to other places in
memory and it might be better to accept the
changes in CHIP-8 and place the interpreter on
pages OC and OD. Relocation is necessary to
implement the 1 114 K version. Because of this,
some changes in the language are necessary for the
1 114 K version and the instruction OOEO becomes
04E0 and OOEE becomes 04EE. Page use for the
1 114 K version is as follows:

Page Use
00 display page
04 first half of interpreter
0 5 second half of interpreter
06 (first half) character table and interrupt

routine
06 (second half) variables, work space and

stack (There is room for a
small operating system in the
middle of page 6)

0 7 interpretive code

Register use is the same as it is in the VIP ver-
sion of CHIP-8 as follows:

Use of Registers

High Low
DMA address
interrupt address
stack, sometimes X register
program counter for interpre-
ter subroutines
program counter for control
section of interpreter
CHIP-8 instruction program
counter
variable pointer, the VX
pointer
variable pointer, the VY
pointer

timer timer
random random numbers
numbers

Add.

the I pointer
display page pointer

used for scratch but available for machine
code subroutines
used for scratch but available for machine
code subroutines
used for scratch but available for machine
code subroutines
used for scratch but available for machine
code subroutines

Complete CHIP-8 Interpreter Listing

Code Notes
- first initialize the registers
F8 OE B1 high order interrupt address

replace OOE with 06 for 1 1/4K
Elf

F8 46 A 1 low order interrupt address
F8 OF BB establish display page, replace

OF with 00 for 1 1/4K Elf
F8 OE B2 establish high order stack

address replace OE with 06
for 1 1/4K Elf

B6 establish page for variables,
work space (same as stack
page)

F8 CF A2 establish low order stack
address

F8 01 B5 high order address for first
CHIP-8 instruction, replace
01 with 05 for 1 1/4K Elf

F8 FC A5 low order address for first
CHIP-8 instruction, replace
FC with FA for 1 1/4K Elf

F8 00 B4 establish control section pro-
gram counter, replace 00 with
04 for a 1/4K Elf

F8 1C A4 establish low order address
for control section program
counter

D4 make R(4) the program coun-
ter, this ends initialization of
registers

- begin control section of inter-
preter, on return from inter-
preter subroutine location 1D
is entered

96 B7 establish high order VY poin-
ter

E2 establish x-register
94 BC make R(C). 1 the current page
45 load first byte of a CHIP-8 in-

struction to D
AF save 1st byte of instruction in

R(F).O
F6 F6 F6 F6 shift right 4 times to get most

significant digit
32 44 go to 44 if most significant

digit is 0, we have a machine
language subroutine

F9 50 else or immediate against 50
to make pointer to table of
subroutine locations

AC save result in R(C).O, the
register used as a pointer

8F bring back 1st byte of instruc-
tion

F9 FO or immediate against FO to
make VX pointer

A6 save in R(6).0, the VX pointer
0 5 load 2nd byte of instruction
F6 F6 F6 F6 shift right to get most signifi-

cant digit
F9 FO or immediate against FO to

make VY pointer
A7 save in R(7).0, the VY pointer
4C B3 interpreter high order subrou-

tine address from table to
R(3). 1

8C FC OF AC set up pointer to table of low
order subroutine addresses

OC A3 low order subroutine address
from table to R(3).0, R(3)
now points to correct inter-
preter subroutine

D3 change to subroutine program
counter

30 ID subroutines end with D4,
return here and go back to
treat another interpreter in-
struction

- comes to location 44 for ma-
chine code subroutines

8F reload 1st byte of CHIP-8 in-
struction

B 3 save in R(3).l, high order ma-
chine code subroutine address

4 5 load advance-2nd byte of in-
terpreter instruction

30 40 go to location 40 to set R(3).0
and call subroutine

- end of control section, except
see tables of addresses

22 69 12 D4 these 4 bytes are a machine
code subroutine to turn on
1861 (TV)-obeyed in usual
way as a machine code sub-
routine

00 00 00 00 unused
- next 15 bytes are high order

addresses for interpreter sub-
routines, notes show most
significant digit of instruction
(Note add 04 to each address
for 1 1 /4K Elf)

01 01 01 01 1 2 3 4
01 00 01 01 5 6 7 8
01 01 01 01 9 A B C
0 0 0 1 01 D E F
00 unused
- low order address-same for

1 1/4K Elf
7F78868E 1 2 3 4
98FC00C2 5 6 7 8
9 4 F l B2DF 9 A B C
709C05 D E F
- Now starts the remainder of

the interpreter subroutines
- entry to the display subrou-

tine instruction, DXYN, re-
view material in section 3 to
see what it does. R(6) is used
to point to work space, R(A)
is I (the memory pointer),
R(7).0 and R(D).O are used I
to store N the number of
bytes to display, and R(C) is
used as pointer in to display
page

06 BE load VX, save in R(E). 1
FA 3F and against 3F (only 64 posi-

tions across display field)
F6 F6 F6 shift right 3 times (gets row

address, i.e. 0-7 in display
page)

22 52 save word address on stack
07 load VY

shift left 3 times to make
space for row address
or on row address, now have
address of word some part of
which VX, VY point to
save in R(C).O
complete address by setting
R(C).l to display page address
load advance, 2nd half of in-
struction
and off number of bytes to
display
save in R(D).O and R(71.0
load starting address of work
space
R(6) now points to work space
establish R(F).O as a source
of 00
load number of bytes to dis-
play (a reentry point)
to location F3 for housekeep-
ing if all done or if no bytes
to display
decrement number of bytes
to display
load advance, load display
byte and save in R(DI.1
reload VX
and against 07, save in R(E).O,
this is position in word-say
R(A) pointed to a location
containing F F (1 111 1111)
and least significant 3 bits of
VX were (01 1)-routine from
here to A9 would make two
adjacent work locations (0001
11 11) and (1 110 OOOO), i.e. it
would shift the word to be
displayed over by 3 bits and
Fill in to left and right with 0.
load word position
to A2 if 00, no shift needed
shift 1 bit to DF, 0 to MSB
of D
transfer DF to R(F).O, DF to
MSB, LSB to DF
repeat number of times in
word address
save 1 st word in work

save 2nd word in work
point R(6) to next workspace
repeat till all display words
treated
idles here after housekeeping,
see locations F3 through FB,
still have to transfer work to
display-R(C) points to first
word to change in display field
make R(C) the X register
load starting address of work
R(6) points to work
00 to R(7).0 and eventually
to VF
load number bytes to display,
reenters here until done
all done?, to D8 to set VF
and exit
load byte from work
and against display field
decrement bytes to display
to BD if result of and is 00,
i.e. no points already set
if points set make R(7).0 and
eventually VF, 01
reload work to D (load ad-
vance)
x'or against display field
write result to display field
reload VX
are we at the end of a row?
if we are quit, no wrap around
else increment R(C)
load next word from work
repeat test for already set bits
0 1 to R(7).0 if bits set
load from work again
x'or against field and write to
field
decrement R(C), increment
R(6)
load R(C).O add 08
load new address to R(C).O
if DF is 0 go to B2 to do
more, else we've run over
bottom and should return
comes here when all done

load VF address to R(6).0
load R(7).0 (either 00 or 01)
and store in VF
fix up stack and return to
control section
unused-done with main part
of display routine see F3-FB,
a patch for housekeeping
entry point for OOEO instruc-
tion (04EO for 1 1/4K Elf) a
machine code subroutine that
erases the display page
load display page address to
R(F).l
load F F to R(F).O
load 00 to D
store via F
load R(F).O, return from sub-
routine if D is 00, all done
else decrement R(F) and go
back to blank another memo-
ry location
entry point for OOEE instruc-
tion (04EE for 1 1/4K Elf)
retrieves interpretive code
address from stack
retrieve high order address
then low order address R(5)
now set
return to control section
part of display routine, resets
memory pointer
load number bytes to display,
save in R(7).0
load R(7).0 to D
if 00 done, go to AA to wait
for DMA
decrement R(A) (memory
pointer) and R(7)
go back to check if done
entry for 6XKK subroutine
load KK to D
write to VX and return
unused, end of page 00 (04
for 1 1 /4K Elf)
begin page 01 (05 for 1 1/4K
Elf)
entry for 7XKK subroutine

load KK to D
make R(6), VX, the X register
add KK to VX
write result to VX
return to control section
all F instructions enter here
and are sent to correct sub-
routines by changing R(3)
load advance-2nd byte of F
instruction is location to
transfer to on this page
change R(3) subroutine pro-
gram counter to correct ad-
dress
entry for FX07 subroutine
load timer value to D (see
interrupt routine)
write to VX and return
entry for FXOA subroutine
wait for in on, off
push down stack
read switch byte
and against OF to get least
significant digit (This corres-
ponds to original Chip-8,
could and against F F to read
complete byte)
restore stack, write to VX
return to control section
entry for FX 15 subroutine
load VX to D
save in R(8). 1 and return
entry for FX18 subroutine
load VX to D
save in R(8).0 and return (see
interrupt routine for FX15
and FX18 explanation)
the next 3 bytes are used by
the FX33 subroutine
100 (base 10)
10 (base 10)
1 (base 10)
entry for FXlE subroutine
make R(6), VX pointer, the
X register
load low order memory poin-
ter address

F4 AA add VX, restore R(A)
3B 28 to 28 if DF is zero, no over-

flow, exit
9A FC 01 else increment high order I

address
BA D4 restore it and return
- entry for FX29 subroutine,

table of display patterns is on
page with interrupt routine,
pointers in to table are at the
beginning of the page

91 BA load interrupt page address to
R(A).l

06 load VX to D
FA OF and against OF to get least

significant digit
AA OA AA get low order R(A) address

from table of pointers
D4 return
00 unused
- entry for FX33 subroutine

(hex to decimal conversion)
E6 make R(6), VX pointer, the

X register
06 BF save VX in R(F). 1
93 BE point R(E) to OllB, first
F8 1B AE entry of table
2A decrement memory pointer
1A increment memory pointer,

later enter here
F 8 00 5A write 0 0 to M(R(A))
OE load table entry to D
F5 subtract VX
3B 4B if overflow go to 4B
5 6 else write remainder to V6,
OAFC 01 5A add 01 to M(R(A)), and repeat
30 40
4E here if overflow-load advance

table entry
F6 shift right-if table entry is 01

DF is set
3B 3C back to do another digit unless

DF is set
9F 56 here if done-restore VX
2A 2A restore memory pointer
D4 return to control section
00 unused

entry for FX55 subroutine
transfer variables to memory
push down stack
load contents of R(6).0 to
stack (one of FO-FF)
point R(7) to VO
load VO, on later entry V1,
etc.
write to M(R(A))
load R(7).0 and x'or against
stack byte-passed VX poin-
ter-if result is 00 we're done
increment R(7) and memory
pointer
go to 5B to transfer next VX
unless done
else restore stack pointer,
return
entry for FX65 subroutine
transfer memory to variables
push down stack
transfer contents of R(6).0 to
stack, one of FO-FF
point R(7) to VO
load M(R(A)) to D, enters
here later
write in VO, V1, V2, etc.
load R(7).0 and x'or against
stack byte-if result is 0 0
we're done
increment R(7) and memory
pointer
go to 5B to transfer next byte
unless done
else restore stack pointer,
return
entry for FX75 subroutine
transfer VX to hex display
make VX pointer the X re-
gister
output VX and return
entry for 2MMM subroutine,
go to interpreter subroutine
store return interpreter code
address on stack

restore R(5) to point to 2nd
half of instruction

entry for lMMM subroutine
rest of code through location
85 is shared
load MM to D and transfer to
RW.0
retrieve M (most significant
part) from R(6).0
set R(5). 1 and return
entry for 3XKK subroutine-
skip if VX equals KK
load KK to D
make VX pointer X register,
x'or VX against KK
return if D does not equal zero
else skip
return to control section
entry for 4XKK subroutine
load KK to D
make VX pointer X register,
x'or VX against KK
skip if D does not equal zero
else return
entry for 9XY0 subroutine,
skip if VX does not equal VY
set R(5) to next instruction
load VY to D
transfer to 8F to complete
instruction
entry for 5XY0 subroutine
set R(5) to next instruction
load VY to D
transfer to 87 to complete
instruction
entry for E subroutine EX9E-
skip if VX equals keys (LSD),
EXAl-skip if VX does not
equal keys (LSD), see Section
4 Hardware Differences. De-
signed to be as close as pos-
sible to original use in VIP
push down stack
switch byte to stack, D
load VX, x'or against switch
byte
and off least significant digit
of answer
write result to stack

load advance-shift right 0 t o
DF for EX9E instruction, 1
to DF for EXAl instruction
load back stack byte, restore
stack
to AD for EX9E instruction,
cany on for EXAl instruction
skip if in not depressed
skip if in depressed but wrong
key
else return
return if in not depressed
skip if in depressed but wrong
key
else return
entry for BMMM instruction,
go to OMMM plus VO
point R(7) to VO
make R(7) the X register
load MM
add VO and D
save in R(5).0
load R(6).0 to retrieve most
significant part of MMM, and
off
to CO if no overflow on addi-
tion, all done
else add 01 to D
set R(5).1 and return
entry for 8XYN instructions,
identical to those in demon-
stration interpreter
load YN to D
and off N to get ON
go to CA unless N is zero
if N is 00 load VY, write to
VX, return
here on other 8XYN instruc-
tions, see demonstration inter-
preter for method used
save ON in R(F).O, push down
stack
load D3, write to stack
load ON, or against FO
write one of F1, F2, F4, or
FS to stack
make VX pointer, X register
load VY and go to stack

D6 56 on return save result as VX
D7 F8 FF A6 point R(6) at VF
DA F8 00 make D equal 00
DC 7E 56 shift DF into D and write to

VF
DE D4 return
- - entry for CXKK subroutine,

random number generator
DF 19 increment R(9)-random byte

-see interrupt routine
EO 89 AE 93 BE point R(E) to some byte on

this page
E4 99 load R(9). 1 -random byte

from interrupt
E5 EE make R(E) the X register
E6 F4 56 add the two random bytes,

save in VX
E8 76 shift right with carry-scram-

ble D
E9 E6 make VX pointer the X regis-

ter
EA F4 B9 add, use result to change

R(9).1 as it isn't changed
often in interrupt routine

EC 56 save result as VX
ED 45 F2 load KK and and against VX
EF 56D4 save result as VX and return
- - entry for AMMM subroutine,

set I pointer
F1 45 AA load MM-transfer to R(A).O
F3 86 FA OF retrieve M from R(6).0 (MSD)
F6 BA complete memory pointer
F7 D4 end of interpreter subroutines
- - remaining 8 locations are

used for interpretive code,
starting address of interpretive
code is 01 FC for 4K inter-
preter, 05 FA for 1 1/4K in-
terpreter

F8 0000 unused, this is 4K version
FA 00 00 unused
FC 00EO erase display page
FE 00 49 turn on TV
02 00 - start interpreter code
- - for 1 1 /4K version
05 F8 00 00 unused
FA 04 EO erase display page

FC 04 49 turn on TV
FE 17 00 transfer to page 7 for inter-

preter code

Character Table and Interrupt Routine

Add. Code Notes
- - This code could go on any

page, as written it is on page
OE for the 4K version and
page 06 for the 1 1/4Kversion

- - first 16 bytes are pointers to
symbols for the characters 0-F

OE 00 30 39 22 2A pointers to 0, 1, 2 , 3
04 3E 20 24 34 pointers to 4 , 5 , 6 , 7
08 26 28 2E 18 pointers to 8 , 9 , A, B
OC 14 1C 10 12 pointers to C, D, E, F
- - next 5 1 bytes are the display

symbols for the characters, 5
bytes/symbol

10 FO 80 start E display
12 F 0 8 0 start F display
14 FO 80 start C display
16 80 80
18 FO50 start B display
1A 70 50
1C FO 50 start D display
1E 50 50
20 FO 80 start 5 display
22 FO 10 start 2 display
24 FO 80 start 6 display
26 FO 90 start 8 display
28 FO 90 start 9 display
2A FO10 start 3 display
2C FO 10
2E FO 90 start A display
30 FO 90 start 0 display
32 90 90
34 FO 10 start 7 display
36 10 10
38 10 60 start 1 display (starts at 39)
3A 20 20
3C 2 0 7 0
3E AOAO start 4 display
40 FO 20
42 20 end of display characters
- - begin interrupt routine, entry

point is OE 46 (06 46 for
1 1 /4K Elf)

43 7A Q (tone) off
44 42 70 restore D and return from

interrupt

2 1

2 2 push stack down, entry to
interrupt

78 22 5 2 save X, P; push, save D
C4 no op, necessary 3 cycle in-

struction
19 increment R(9), random num-

ber (see instruction CXKK)
F8 00 A0 set low order address of DMA

pointer
9B BO set high order DMA address
E2 E2 make up necessary 29 machine

cycles
80 E2 load R(O).O to D
- DMA 1

E2 20 A0 restore DMA address
- DMA 2

E2 20 A0 restore DMA address
- DMA 3

E2 20 A0 restore DMA address
- DMA 4

3C 53 continue till done
9 8 R(8).1 is timer, load it (see

FX07 and FX 15 instructions)
32 67 if D is zero go to 67, timer is

timed out, leave alone
AB 2B 8B B8 else subtract 01 from timer,

method used does not disturb
the DF flag, DF is not changed
by the interrupt routine

88 load R(8).0, tone duration,
see FX18 instruction

32 43 if tone duration is over go
to 43

7B continue with or start tone
2 8 decrement R(8).0, tone dura-

tion
30 44 return, leaving tone on
- end of interpreter

Extending the CHIP-8 Instruction Set

The CHIP-8 interpreter is well organized and
constructed and as a result it is easy to modify and
extend. If a specific task, for example the control
of a robot, is to be programmed the interpretive
language can be changed to suit the application.
Let's look at how we might extend the current
CHIP-8 instructions. There are two main types of
instructions one might wish to add, those which

involve pointers to two of the CHIP-8 variables,
(e.g. like 8XYN) and those which require a pointer
to a single CHIP-8 variable (e.g. 6XKK).

The first group of instructions might be created
be expanding either the 5XY0 instruction or the
9XYO instruction. Say we chose to expand the
5XYO instruction. The entry point for the 5XY0
instruction would be changed to point to a third
CHIP-8 page. The least significant hex digit of the
instruction would be examined and if it was 00 the
instruction would have its usual meaning. However
if the last hex digit was 1, 2, etc., new operations
would be performed.

As an example let's expand the 5XYO instruc-
tion to the following set:

5XYO skip if VX = VY; the next interpreter
instruction is skipped over if VX equals
VY (original meaning)

5XY1 skip if VX) VY; the next interpreter
instruction is skipped over if VX is
greater than VY

5XY2 skip if VX (VY; the next interpreter
instruction is skipped over if VX is less
than VY

5XY3 skip if VX + VY; the next interpreter in-
struction is skipped over if VX does not
equal VY

We will place the new subroutines in the middle
of page OE between the interrupt routine and the
bottom of the CHIP-8 stack. The entry point of
the new interpreter subroutine will be OE 70 (06 70
for the 1 1/4K Elf). CHIP-8 must be modified so
that the 5 instructions transfer control to this loca-
tion and we shall have to place this address in the
interpreter. Replace the 01 at location 00 55 with
OE (06 in the corresponding place for the 1 1/4K
Elf) and replace the 98 at location 00 65 with 70.

Additional Skip Instructions
Expa~lsion of 5XYO Instruction

Add. Code Notes
set R(C).l to current page
load advance 2nd CHIP-8
byte, now YN
and off 00, 01, 02, or 03 de-
pending on instruction
add starting address of table
of locations
point R(C) to proper entry in
table

pick up table entry, point
R(C) to proper subroutine
address
load VY, make R(6) the X
register
go to one of four subroutines
address for 5XY0 instruction
address for 5XY 1 instruction
address for 5XY 2 instruction
address for 5XY3 instruction
entry for 5XY0
x'or VX against VY
return if D does not equal 00
else skip and return
entry for 5XY3
x'or VX against VY
skip if D does not equal 00
else return
entry for 5XY 1
subtract VX from VY
skip if DF equals zero
else return
entry for 5XY2
subtract VY from VX
skip if DF equals zero
else return, end of 5XYN sub-
routines

Among the instructions that the interpreter
lacks are simple multiply and divide instructions to
go along with its addition and subtraction instruc-
tions. Let's expand the 9XY0 instruction to add
these instructions to CHIP-8. Multiply and divide
instructions are necessarily 16 bit ones, the product
of two 8 bit numbers may be up to 16 bits long
and of course we need 16 bits to represent the
quotient and remainder from the division of two 8
bit numbers. An additional variable will be required
to hold the most significant byte from a multipli-
cation and the remainder from a division. VF is
already a special variable and will be used to hold
the most significant part of the product in multi-
plication and the remainder in division. As well it
would be nice to be able to represent the product
of a multiplication as a decimal number and a
16 bit hex to decimal conversion routine will also
be added.

The new "9" instructions will be located starting
at the beginning of page OD and we shall have to
change the address of the "9" instructions in the

interpreter. Memory location 00 59 should be
changed from 01 to OD and memory location 00 69
should be changed from 94 to 00.

The new instructions are:

9XY0 skip if VX # VY; the next interpreter
instruction is skipped over if VX does
not equal VY (unchanged)

9XY 1 set VF, VX equal to VX times VY where
VF is the most significant part of a 16
bit word

9XY2 set VX equal toVX divided by VY where
VF is the remainder

9XY3 let VX, VY be treated as a 16 bit word
with VX the most significant part and
convert to decimal; 5 decimal digits are
stored at M(I), M(I + I), M(I + 2),
M(I + 3), and M(I + 4), I does not change

Multiply, Divide and 16 Bit Display Instructions
Expansion of 9XYO Instruction

Add. Code
OD 00 93 BC
02 45
03 FA 03
05 FC 18

08 OCAC

OB 96 BE
OD F8 F F A E
10 F8 00 5E
13 F6
14 F 8 0 9 A D

Notes
set R(C).l to current page
load 2nd CHIP-8 byte, YN
and off 0 0 , 0 l , 02, or 03
add starting address of table
of locations
point R(C) to proper entry in
table
pick up table entry, point
R(C) to proper subroutine
address
before calling subroutines get
ready for multiply and divide
R(7), VY pointer the X re-
gister
point R(E) to VF

set VF to 00
clear DF flag
initialize counter for shifts
to 09
now call subroutines
go to one of 4 subroutines
address for 9XY0 instruction
address for 9XY 1 instruction,
multiply
address for 9XY2 instruction,
divide

address for 9XY3 instruction,
hex to decimal conversion

E7 VY pointer (least significant
byte) is the X register

4E F5 load table entry, subtract
from VY

E6 VX pointer (most significant
byte) is the X register

OE 75 load table entry, subtract
with carry

2E decrement table pointer
3B 69 to 69 if overflow done with

this digit
5 6 else update VX
E7 OE F5 57 and update VY
OA FC 0 1 5A increment memory pointer

location
30 55 and go back till overflow
- here on overflow

4E F6 load table entry, check for
done

3B 50 if not done to 50 for next
digit

- here when done

9F 56 restore VX
8F 57 restore VY
2A 2A 2A 2Arestore memory pointer
D4 return
- table entries

10 27 10000 (base 10) 2710 (base
16)

E8 03 1000 (base 10) 03E8 (base 16)
64 00 100 (base 10) 0064 (base 16)
OA 00 10 (base 10) OOOA (base 16)
01 00 1 (base 10) 0001 (base 16)
- entry for 9XYO subroutine

(original instruction)
07 load VY
E6 make VX pointer the X re-

multiply routine entry, works
by shift and add method like
pencil and paper multipli-
cation
shift double length word one
bit to the right
decrement and load counter
done when counted out
back if DF is 00, nothing to
add
else add VY to VF, before
going back
end of multiply routine, be-
gin divide routine-first check
for division by zero
load VY to D
if not equal to zero go on
eke set quotient and remain-
der to FF and return
here if divisor greater than 0,
division method similar to
multiplication
load VF, subtract VY
to 3A on overflow
else save result in VF
shift one bit left
decrement, load counter
return when counted out
shift one bit left
return to 35 for next subtrac-
tion
entry to 9XY3 subroutine,
hex to decimal conversion (5
decimal digits) method is
similar to that for FX33 in-
struction
save VX
save VY
point R(E) to 1 less than start-
ing address of table of powers
of 10
decrement memory pointer
increment memory pointer,
table pointer
set memory pointer location
to 00

gister
82 F3 x'or VY against VX
83 3A 86 if D not equal to zero, skip
85 D4 else return
86 15 15 D4 skip and return

If one has an ASCII device connected to an
ELF, perhaps a keyboard, it would be convenient
to have a CHIP-8 instruction which would create
symbols for the characters in ASCII code. Such an
instruction is presented last, the FX94 instruction.

This instruction uses the space left unused in the
interpreter by the expansion of the "5" and "9"
instructions and creates symbols for the 64 charac-
ters in 6 bit ASCII. In operation it works like the
FX29 instruction except that the memory pointer
is set to the address of one of the 64 ASCII sym-
bols corresponding to VX instead of to the address
of one of the 16 symbols 0 - F. If the "5" and "9"
instructions have not been expanded this instruc-
tion can, as well, replace the FX29 instruction and
ways to implement either alternative will be given.

The instruction fits on a single page; each of the
64 ASCII symbols are coded by 3 bytes which re-
quires 192 memory locations and the remainder of
the subroutine fits in the 64 locations remaining.
The construction of this instruction is quite
simple. The Fist 16 locations on the page are
patterns which are available to construct the sym-
bols. Each ASCII symbol is designated by 5 hex
digits which correspond to the patterns needed to
construct the symbol. The sixth hex digit in the
three words used to code each symbol serves as an
indicator of the length of the symbol. When an
FX94 (FX29) instruction is carried out this value
is transferred to VO where it can be used to get a
pleasing spacing of the symbols.

The symbols are relatively crude, both because
of the poor resolution of Elf graphics and also
because they consist of combinations of only 16
patterns. However they are easily recognized and
make the presentation of ASCII data relatively easy
with the aid of a very simple interpreter program.

The method used to transfer control from the
interpreter to the new subroutine is to change the
program counter from R(3) to R(C). This change
has to be done in the interpreter and the address
of the new subroutine must first be loaded to R(C).
If the ASCII subroutine is located on page OC the
proper entry point is OC DO. To make an FX94 in-
struction add the following code to the interpreter
on page 01 (4K version):

Add. Code Notes
01 94 F8 DO AC point R(C).O to DO
97 F8 OC BC point R(C).l to page OC
9A DC make R(C) the program

counter

This code overwrites the locations which were used
for the "5" and "9" instructions. The same code,
but located starting at address 0 1 29, would change
the FX29 instruction to the ASCII instruction.

Add.
-

Six-Bit ASC

Code
-

:I1 Symbols Subroutine

Notes
subroutine can reside on any
page, here it is on page OC
the first 16 locations are the
patterns available to make up
the symbols
. (blank)

m a
locations 10 through CF are
codings for the 64 ASCII
symbols, 3 bytes to a symbol
A diagram giving the order in
which the patterns are assem-
bled from the bytes is:

XX XX XX
45 23 61

where the 6 t h hex digit con-
tains the width of the charac-
ter, at most 5 bits. The first
ASCII character (hex 00) is @,
its coding is 46, 3E, 56 which
gives:
pattern 6 is F8- m n n B B . . .
pattern 3 is 88- n . . n . . .
pattern Eis EO- m m m
pattern 4isA8-m.m.m. . .
pattern 6 isF8- m m m m m . . .
The character is 5 bits long
00 - @
01 - A
02 - B
03 - C
04 - D

0 5 - E
06 - F
07 - G
08 - H
09 - I
OA - J
OB - K
OC - L
OD - M
OE - N
OF - 0
10 - P
11 - Q
1 2 - R
13 - S
1 4 - T
1 5 - U
16 - V
1 7 - W
1 8 - X
19 - Y
1A - Z
1B- [
1 c -\
1D -]
1E - A
1F --
20 - space
21 - !
2 2 - "
23 - #
24 - $
25 - %
26 - &
2 7 - '
28 - (
29 -)
2A - *
2 B - +
2C - ,
2D - -
2E - .
2F - /
30 - 0
31 - 1
32 - 2
33 - 3
34 - 4
35 - 5
3 6 - 6
37 - 7
38 - 8

1 F 9 F 4 F 3 9 - 9
8 0 8 0 10 3A - :
2 E 2 0 3 0 3 B - ;
21 2C41 3C- <
EO EO 30 3D - =
2C214C 3 E -)
8 8 1 F 4 F 3 F - ?
- end of character table, entry

point for ASCII display sub-
routine

- first point R(A), memory
pointer to a scratch place in
random access memory-here
at bottom of stack

F8 OE BA point R(A).l to page OE
F8 9F AA point R(A).O to 9F, just be-

low stack, R(A).O points to 9B
when returning from routine

9C load page number to D
B3 BD point R(3).1 and R(DI.1 to

this page
F8 FO A7 point R(7) to VO
E A make R(A), memory pointer,

the X register
06 FA 3F load VX, and off 6 bits
5A F4 F4 write to M(R(X)), add twice

to get number times 3
FC 10 add starting address of char-

acter table
AD R(D) now points to correct

location in large table
- entry point for successive

table bytes
OD FA OF load table entry, and off least

significant digit
A3 point R(3) to correct entry in

table of patterns (small table)
03 73 pick up pattern, write to ran-

dom access memory, decre-
ment I

4D pick up byte again, this time
advance R(D)

F6 F6 F6 F6 shift right to get most signifi-
cant digit

A3 point R(3) to correct entry
8 A load R(A).O
FB 9A check, have we done 5 pat-

terns?

F5 3 2 F B if D is 00 we're done, go to
set VO and return

F7 0 3 7 3 else pick up pattern, write t o
random access memory

F9 30E6 and return for next table entry
- - here on return
FB 83 retrieve length 3f symbol

from R(3).0
FC 57 write t o VO
FD 1AD4 fix up R(A) and return

The reader would probably like to see what
these characters look like when displayed. Here is
an interpretive program which can be used to dis-
play all of the ASCII symbols. .The program waits
for a switch byte (0-F) and when it is entered dis-
plays the corresponding ASCII symbol in the upper
left of the screen followed by as many ASCII sym-
bols as the screen has room for. If the byte in the
interpreter (4K) at location 01 11 is changed from
OF to F F complete switch bytes (00 - FF) can
be entered.

Program to Display ASCII Characters

Add. Code
0200 F50A

0202 6600
0204 6700
0206 6B3F
0208 F594

020A 7501
020C D675
020E 8604
0210 7601

0212 8D60
0214 F594

0216 8D04

0218 8DB5

021A 3F01

021C 1208
021E 6600
0220 7706

Notes
V5 equals keys-waits for in
button
V6 = 00
V7 = 00, display pointers
VB = 3F, line length
(F529?) set I to V5 ASCII
symbol, VO = symbol length
V 5 = V 5 + 0 1
display the symbol at V6, V7
V 6 = V 6 + V O
V6 = V6 + 01, space between
symbols
VD = V6
(F529?) set I, VO for next
symbol
VD = VD + VO, add length of
next symbol t o VD
VD = VD - VB, check will it
extend past line end?
skip if VF is 01, over the end
of line
O.K. go back and display
reset to new line
V7 = V7 + 06, set line down

0222 471E skip unless V7 is lE , we're
off bottom

0224 1224 stop-screen is full
0226 1208 return to do another line

I t is hoped that these examples demonstrate the
ease with which the CHIP-8 interpreter can be ex-
tended and modified. One of the limitations of
CHIP-8, the fact that only memory addresses 00 0 0
through OF F F are available t o it, can be overcome
by redesigning the interpreter to address memory
in 4K fields. A field designation instruction is used
to change from one 4K field to another. A relo-
catable 1K interpreter which includes all of the
material presented in this booklet, as well as a field
instruction, is listed in the Appendix. The field in-
struction is a four byte one which has the form,
FFFF, IJMMM. _M is the new field and MMM is the
address of the first instruction to be obeyed in the
new field. For example t o transfer t o a new field:

Add. Code Notes
OF DO 6300 set V3 to 00
D2 6400 set V4 to 00
D4 650A set V5 to OA
D6 FFFF field instruction go to field 1,
D8 1004 0 04
-- --

1 0 0 4 F529 point t o symbol for A
06 D345 display A
-- -- etc.

More ambitious programs can be written with the
4K memory restraint removed. The field designa-
tion is stored in R(B).O and is set on entry t o the
interpreter; if less than 4K of memory is available
it can be ignored.

Appendix

The interpreter Listed below is relocatable and
can be placed on any four contiguous pages (e.g.
OAOO - ODFF for a 4K Elf). It must be entered
with R(3) as the program counter. Enter at loca-
tion 0000 for default values for the first interpre-
ter instruction (OlFE), the display page (OF), and
the page for variables and constants (OE). To
change the default values set R(5) to the address

0000
000 8
001 0
001 8
0020
0028
0030
0038
00 40
0048
0050
0058
0060
0068
0070
0078
00 80
0088
0090
009 8
OOAO
00A8
OOBO
00B8
OOCO
OOC 8
O0DO
00D8
OOEO
00E 8
OOF 0
00F 8

of the first interpreter instruction, set R(B).l to
the display page, set R(6).1 to the page for vari-
ables and constants, and enter the interpreter at
location 000C. The default value for the location
of the first interpreter instruction (OlFE) allows
space for an erase display instruction (OOEO) be-
fore a program which starts at location 0200. The
FX94 instruction in this interpreter does not alter
the value of VO.

0178
01 80
01 88
01 go
01 98
01A0
01A8
OlBO
01B8
0 1 co
01 C8
OlDO
01D8
OlEO
01E8
OlFO
01F8

b b ~ r t g 6 r e b r r t o b k rrr+eryre.?&-d ioLe 6 thp P
r n ~ c l u - co& jYbroCt , - 1 0 f ield 0 (0000 to D FFFJ; Lky aru-
GL~'x~=E(~L to C& t o r n 7 $ tk 10 f ' ,c/ds.

Additional copies of this booklet can be ordered from:

Paul C. Moews
16 B Yale Road
Storrs, CT 06268

The price, $5.50, includes first class postage and handling.
Two other booklets with programs for the basic %K Elf are also available:

1. Music and Games

2. Graphics

for $3 each, postpaid.

