*
]
* Ok
AR AN
* KK
* kK
* kK *
* k% *
*k K *
x*
HAAHK AN
A AH AN
*k
Ak * *
Aok * *
HARHAH AN * * * kK
* kK X Kk
* Kk K MK AKHAAKNK
AR AN AN
* Ok
* % KKK
* % *
AR AAK *
R ACAKA K * *
* *
ok * * * * *
PR * * * *
* KK
* K
A AN
KA AN K
* %
> dKK * %
* K Xk Ak * %
* * * HAAHKAKH
* * *
A ACHAHCH
kKK * K
AN * * *x
* * * * ek
* * A K AR A KAK
* *
HAAHK *
* * Kk
* * kK
K * HAKAAK * kK
* K K * ¥ ¥
I KKk
* K
AN AN
kKKK
3 *
Kk * *
* ok * *
* x HAKHKA
* %
HeAAKA AR
* *
* *
* *
* *
kKK

* *

* * *
*x

x* * *
A AN A K
* *

* AR

* % ¥ %
* % % %
* XXX

AN *

*
*

*
*

Ak

*

K ek

* * x*
A HK K K
* *

*

* %%

* x*
A NN e K
* *

Lo d HH
* Xk kXK
* * *
x* * *
A AN e K
* *

* *
* * *
L . * *
K KKK *
”******
L2 2 *
Ak
WA
Ak A ACHC NN K
MK *
*
*
* * AR A K
240 AR ACH A KK
* x*
* *
* *
* x* %K * AN K
* * kK KK
X
* Ak
* A A 3K
AR K
*x

* * Ak * *
* * A * *
* kX HACH AN AN * kK
* kK * X
A AR A AR A

KK
* X

Kk * * % *
* x* XK * X *
* bt
* X *
A KK *

A A
* *

b3 * * * kN
* * * * L. B
* * NN x® K X
E 3 * ok K
AN K * L I

*
*

A * * Lo
* x K AeHACH A A K €k
* Eead ANk
* K Ak
A A K * * E 23

* *
* x* %

* * * ok XK * kA
* * AN AN K x* kK
* x* %k x* Xk *
* x* kK * Xk *
2 0K AR A K ANk AKX

*XK
XX
* K
* e 2
2 e e K
*
* * *
* *
x* % *
A AN * Xk *
* 240 N K
*
*
b *
* *
x* * AN
KN
* *

for noncommercial use only

Oct.

PCM

2010

20,

PROGRAMS FOR THE COSMIC ELF _ "ELF ISH"
An Interpretive Development System

by Paul Moews

List of Sections

1. Introduction 3
2. The Interpreter 6
Use of Memory 6
The Instruction Set 8
Summary of Instruction Set 10
A Simple Program in Elfish 13
3. The Editor-Assambler 16
Use of Editor 16
The Assembler 19
A Simple Progran in Elfish (with Labels) ——e——eeeeman 19

Progran Listings

1. A Simple Program in Elfish (Assembled) 15
2. A Simple Program in Elfish {with Labels) 19
3. The Interpreter 22
4., Tne Editor-Assembler 25

Copyr ight @ 1982 by Paul C. Moews
All rights reserved

Published February, 1982 by Paul C. Moews

Manufactured in the United States of Anerica

Introduction

RCA's COSMAC 1802 microprqcessor was designed to simplify the
writing of interpreters. As an example, KCA's VIP computer is
supplied with a 512-byte interpreter; the corresponding language is
called CHIP-8. This language is surprisingly powerful, and quite
complex programs, e.g. blackjack, lunar lander, etc., have been
written using it. Further details may be found in an article by
Joseph Weisbecker (An Easy Programming System in the December, 1578
BYTE, p. 108). RCA's CHIP-8 was designed for games and has a display
routine with features that are not necessary for control applications.
It also has a number of other drawbacks: the interpretive code is not
relocatable, the address range of the interpreter is limited to 4K,
the variables are only 8-bit, and there is no provision for displaying
ASCII symbols. I have written a development system for the 1802 that
I hope will remedy these defects and which will introduce ideas to
make simple interpreters easier to use. My goal was to write a 1K
interpreter and a 1 K editor-assembler using the interpretive

language. Both fit in ROM and are page relocatable.

The new interpretive language, ELFISH, is written for 4 K and
larger Super Elf's and E1f II's and was developed on a 4K Super E1f.
While similar to CHIP-8, the language is an attempt to improve on
CHIP-8 by introducing a number of features that malke it more versatile
and easier to use. First the interpretive code is relocatable; this
means that interpretive programs can be located anywhere in memory, or

moved to a new position in memory without making any changes. The

relocatability of the interpretive code is done by using & base
register and the whole address field of the 1802 chip is available to
the interpreter by simply changing the value of the base register.

The 8-bit CHIP-8 variables were replaced by 16-bit variables. These
variables are a kind of image of the 1802's registers, and, as with
the registers, there are some 8-bit instructions and some 16-bit
instructions. Sixteen-bit variables are very useful with an 8-bit
microprocessor as they can store memory locations, making it easier to
write utility programs of all kinds. The instruction set is more
powerful; it includes multiplication and division instructions and has
the ability to display ASCII symbols. Like the VIP, the E1f has only
a hex keyboard and the language is designed to accomodate the
keyboard, that is, it is hexadecimally oriented. However the ELf has
a latched keyboard while the VIP has a scanned keyboard. A latched
keyboard has advantages over a scanned keyboard, and these advantages
were made use of in writing the interpreter and its companion editor-

assembler.

The other half of the package, a 1 K editor-assembler, was
written in the new language. An editor greatly increases the
productivity of a programmer, and I have tried to make this editor
easy to use. The editor displays 4 lines of code together with their
addresses, a choice of absolute or relative addresses is possible.
Keyboard bytes are entered at the bottcm of the display, and there is
an indicetion of the mode of the editor at the lower left of the

screen. Changes and corrections occur on the second line of the

display, the "current line". The editor will accept 9 commands:
replace, insert, delete, go to, scan up, scan down, change address
mode, execute, and assemble. Changing between these 9 commends or
modes can be done at any time. The relative address mode simplifies
hand assembly or the built in assembler can be used. To use the
assembler, labels are inserted in front of subroutines and at all
program entry points. Only interpretive jump and subroutine cslls are
assembled so the assembler is a partial one. Three passes are made by
the assembler, the first two of which are interrupted by the
occurrence of errors. The assembler halts if duplicate labels are
found or if jumps or subroutine calls are found without a
corresponding label. If the first two passes are successful the code

is assembled in a third pass.

An advantage of this type of programming system is its inherent
stability. The interpreter instructions do not effect memory
locations aside from the varisbles and the buffers, even in an all RAM
system you should experience few "crashes". Perhaps the biggest
disadvantage is that the interpretive instructions do not serve as
their own mnemonics, and in this the interpretive code is like machine
code. However assigning mnemonics would require a much more complex

assembler and a larger computer.

The Interpreter

Interpreter Listing

An annotated hexadecimal dump of the interpreter is in Listing 1.
All of the code is relatively straightforword although there are many
"paths" through it for some of the instructions. If you are not
familiar with the 1802, RCA's "User Manual for the 1802
Microprocessor" - MPM-201A - is well written, thoroughly explains all

of the instructions, and is recommended.

Use of Memory

The editor-assembler followed by the interpreter go on any 8
contiguous memory pages, ROM or RAM. On my Super E1f I use either RAM
pages 06 through OD or ROM pages 84 through 8B. Two additional pages
of RAM are required, one for the display (default display page is OE)
and one for buffers, variables and the stack (default is OF).

The interpreter provides sixteen 16-bit variables and so 32
memory locations are necessary (on page OF) to store these variables.
As well the interpreter has save and restore instructions for the
variables, and an additional 32 locations are required for the save
locations. The assignment of the 64 variable locations is shown in

the following table:

Variable Locations

Save Save Save Save
Variable Low High Low High Variable Low High Low High

FO F1 DO D1
F2 F3 D2 D3
F4 F5 D4 D5
F6 F7 D6 D7
F§ F9 D8 D9
FA FB DA DB
FC FD DC LD
FE FF DE [DF

EO Et CO C1
E2 E3 Cz2 C3
E4 E5 Cc4 C5
E6 E7 C6 C7
E8 E9 C8 (9
EA EB CA CB
EC ED CC ED
EE EF CE CF

~NoumEWND -0
MmO O W >0

Conversions and the displaying of symbols are carried out with
the aid of three buffers. A U-byte hexadecimsl buffer is used to
store the four hexadecimal digits that correspond to a variable, while
a 5-byte decimal buffer stores the five decimal digits that correspond
to a variable. The 5-byte display buffer is used to store a bit
pattern for a symbol to be displayed, a display instruction then
transfers this pattern to the display screen. The locations of these

buffers, again on page OF, are given in the following table.

Buffer Locations

Hexidecimal AC AD AE AF
Decimal B6 B7 B8 B9 BA
Display EB BC BD BE BF

Finally there is a stack, also on page OF, which extends
downwards from location 9F. The interpreter does not check for stack
overflow; if the stack extends below page OF, it will begin to appear

on the display page.

The instruction set

All Elfish instructions consist of four hex digits. The first
hex digit determines the type of instruction, E is reserved for
labels, and there are therefore 15 basic types of instruction. The
next 3 hex digits are used in several different ways. They can be
used to specify a memory location and as there are 3 hex digits
available, any memory location from 000 to FFF can be specified.
Memory locations are addressed relative to a base register. The base
register is set to the address of the first location or entry point of
a program, so that all references to memory are relative to the

starting address of the program.

Elfish provides 16 two-byte variables, designated VO through VF.
In some cases it is necessary to refer to the higH or low order byte
of a variable, and this is done in a manner analogous to that used for
the registers, i.e. V(7).1 refers to the high order byte of variable 7
and V(4).0 refers to the low order byte of variable 4. A single hex
digit can be used to specify one of these variables. In some
instructions the second most significant hex digit is used for this
purpose leaving the last two hex digits to specify different
instructions. In arithmetic operations, the two variables to be added
etc. are specified by the second and third hex digits, leaving the
last hex digit to designate the type of arithmetic operation to be

carried out.

The El1f's display screen is a bit mep; i.e. the 2048 bits on the
display page are mapped as 2048 small squares on the display, 64
horizontal squares by 32 vertical squares. Each square is either
black if its corresponding bit is 0, or white if its bit is 1. The
language is designed for use with these low resolution graphics and
the display instruction and the instructions which generate patterns
for display are among the important instructions. There are a number
of commands which create 5-byte display patterns in the display
buffer. For example if variable V(5).0 was O0A, C556 would create a
bit pattern for the symbol "A" in the display buffer, while C55B would
create a bit pattern for the symbol "J" (ASCII symbol for OA). The
instruction CX56 creates display patterns for hex symbols while CX5B
creates display patterns for ASCII symbols. The display instruction
DXYN can be used to transfer the contents of the display buffer to any
location on the display screen. To do this, VX would have to point to
the display buffer, while V(Y).0 would be preset to the desired
horizontal address on the screen (0 through 64) and V(Y).1 would be
set to the vertical address (0 through 32). N indicates how many
bytes to displey and in the case of the display buffer it would be set
to 5. Say we point VB to the display buffer and set V(A).0 = 00 and
V(A).1 = 00, then when the instruction DBA5 was executed, the contents
of the display buffer would appear in the upper left corner of the

screen.

Perhaps the best way to understand how the language works is to
introduce the instruction set and demonstrate its use with a simple

program.

Most

SUMMARY OF INTERPRETER INSTRUCTIONS

Significant

Hex Digit

0
1

L]

(M)
(MvM)
M)

(MMM)

(Xz2)

(XKK)

(XKK)
(XYZ)

(XYZ)

(XYo), (Xymn

(XKK)

(XKK)
(Xz2)

(XYN)

(222)
(X22)

Result of Instruction

Do machine code sub. at relative address MMM
Go to relative address MMM

Do interpreter sub. at relative address MMM,
4000 instruction ends interpreter subroutines

Set V(0) to point to memory location
MMM, relative address

4000 is return from subroutine, UFFE is erase
display-plus a variety of keyboard instructions
involving one variable, X, distinguised by ZZ

sets V(X).0 to KK + V(X).0
sets V(X).1 to KK + V(X).1

8-bit instructions involving two variables
V(X).0 and V(Y).0 or V(X).1 and V(Y).1

eight 16-bit instructions as well as eight
instructions involving V(X).0 and V(Y).1

XYO is V(X) (16 bit) = V(X).0 times V(Y).O0
XY1 is V(X).0 = V(X).0/V(Y).0 with
V(X).1 equal to the remainder

V(X).0 = KK

V(X).1 = KK

a variety of instructions referencing
one variable V(X).0 or V(X).1, ZZ
codes for type of instruction

display instruction, V(X) (16 bit) is
memory pointer for location to be displayed
V(Y) is display pointer, V(Y).1 is vertical
pointer and V(Y).0 is horizontal pointer

N indicates number of bytes to display

E instructions are ignored, used for labels
a variety of 16-bit instructions,

referring to one variable, VX, ZZ codes
for the different instructions.

10

The 4, 7, 8, C and F instructions are subdivided further and a table
is given for each class of instruction.

SUMMARY OF 4 INSTRUCTIONS

Instruction Result
4000 return from interpreter subroutine
4XD7 transfers contents of keyboard to V(X).0
4XD8 transfers contents of keyboard to V(X).1
4XDB keys to V(X).0, waits for in on, off
4XDC keys to V(X).1, waits for in on, off
YxXE2 waits for in button, on then off
4XES skip if in pushed
4XE9 skip if in pushed, wait for in off
4XED wait for in off
YFFE erase the display

SUMMARY OF 7 AND 8 INSTRUCTIONS

TXYZ TXYZ 8XYZ 8Xyz

X(0),Y(0) X(1),Y(1) X(16),Y(16) X(0),Y(1)

z z z z Result
0 8 0 8 X=Y
1 9 1 9 X =Xand Y
2 A 2 A X =X xor Y
3 B 3 B X=X+Y

4 c y c X=X-Y

5 D 5 D skip if X = Y
6 E 6 E skip if X does not = Y
7 F 7 F skip if X > Y

1

SUMMARY OF C INSTRUCTIONS

Instruction Result

CX03 convert V(X).0 to decimal, result to decimal buffer

CcXou convert V(X).1 to decimal, result to decimal buffer

cxu3 byte pointed to by VO to V(X).0, VO = VO + 1

CXuY byte pointed to by VO to V(X).1, VO = VO + 1

CX56 hex symbol for least significant part of V(X).O,
result to display buffer

CX57 hex symbol for least significant part of V(X).1,
result to display buffer

CX5B ASCII symbol for V(X).0 to display buffer

CXsC ASCII symbol for V(X).1 to display buffer

CX66 length of symbol in display buffer to V(X).0

CX67 length of symbol in display buffer to V(X).1

CXE9 decrement V(X).0, skip if V(X).0 not equal O

CXEA decrement V(X).1, skip if V(X).1 not equal O

SUMMARY OF F INSTRUCTIONS

Instruction Result
FX0A convert VX to decimal, result to decimal buffer
FX&A VX to hex buffer (+ pointed to 3 bytes)
FXB3 save VX
FXB9 restore VX
FXCu symbol pointed to to display buffer (hex) VX = VX + 1
FXC8 symbol pointed to to display buffer (ASCII) VX = VX + 1
FXDA point VX to hex buffer
FXDE point VX to decimal buffer
FXE2 point VX to display buffer
FXF3 save base register in VX
FXF9 load base register from VX

12

A Simple Program Written in Elfish

This kind of interpretive language lies part way between assembly
language and a higher level language like BASIC. The instructions do
"tasks" which are smaller than those done in a higher level language
and there is more "bookkeeping" to keep track of. However the
instructions are simple, the programming is no more difficult than
programming in BASIC - there is just a little more code to write to
achieve the same result. As an example let's study a program which
displays 50 consecutive ASCII symbols on the display as 5 lines of 10

symbols. (See Listing p. 15)

We will read a keyboard byte into a variable, convert the
variable to a bit pattern for its ASCII equivalent, and display it;
increment the variable and repeat the ASCII conversion and display,
etc. until 50 symbols are shown. To do this we have to move the
display pointer to the proper positions, keeping track of the number

of symbols in each row, and stop when we have shown 50 symbols.

The initialization of variables and the calling of the display
subroutine are done in the main program. Variable A is the display
pointer, V(A).0 and V(A).1 are initially set to 00 so that the first
symbol will appear in the upper left of the screen. VB is set to
point to the display buffer where the bit patterns for the symbols to
be displayed are assembled. V2.0 is intialized to decimal 50 and

decremented each time a symbol is displayed, when it reaches zero the

13

program returns to the beginning. V1.0 is the hex value for the
symbol to be displayed and is incremented after each symbol is shown,

initially it is read from the keyboard.

The display subroutine shows the symbols and does the
"bookkeeping" for the display pointers. Each time a symbol is shown,
06 is added to VA.O so that the next symbol yill be properly placed
along the line. After 10 symbols have been shown 06 is added to VA.1
to start the next line and VA.C is reset to 00. VC.0 is the counter
that keeps track of the number of symbols on a line; it is initialized
to 10, and is decremented to count the number of symbols on & line, it

is reset to 10 when a line is full.

The program can be placed anywhere in memory as it is relatively
addressed, normally this would be done with the editor-assembler. The
following listing gives an assembled version of the program; a version
which utilizes labels and requires assembly is shown later. Once the
program is entered and running enter a byte to the keyboard and push

the "in" button, 50 ASCII symbols should appear on the display.

14

Rel. Address

0000
0002
ooou
0006
0008
000A
0ooc
00CE
0010
0012
0014
0016
0018

001A
001C
001E
0020
0022
0024
0026
0028&
002A

Program Listing

Code

Remarks

main program

41DB
4FFE
AAOO
BAOO
FBE2
ACOA
A232
C15B
201A
5101
C2EQ
1000
10CE

waits, read a byte to V1.0
erase display screen

sets VA.O to 00

sets VA.1 to 00

point VB to display buffer
set VC.0 to 10 (decimal)

set V2.0 to 50 (decimal)

make ASCII symbol for V1.0
call subroutine to display it
increment V1.0

decement V2.0, skip unless done
return to read another byte
else return to do next symbol

display subroutine

DBAS
5A06
CCE9
1024
4000
AAOO
6A06
ACCA
4000

display symbol in buffer

add 06 to row display pointer
decrement row counter, skip unless full
go reset line pointer if row full

else return from subroutine

reset row pointer to 00

add 06 to line pointer

reset line counter to 10 (decimal)
return from subroutine

15

The Editor-Assembler (see Listing 2)

Use of Editor

The editor requires the entry of two 16 byte addresses before it
enters the "command" mode. These addresses establish a region of
memory for editing; the editor does not allow memory changes outside
of this range, all other memory is protected. As well, the assembler

treats code only in the region of memory established for editing.

On entry the editor displays SA (Starting Address) and waits for
the user to enter the starting address of the region of memory to be
edited. Once this is done, END (End Code) is displayed and the editor
waits for the entry of the end of the region of memory to be entered.
If the end of code address is less than the starting address, the

editor will not accept it and returns to the entry point.

The editor then inquires:

CLEAR ? C=YES

A single hex digit is to be entered. If it is C, all memory locations
in the edited region are set to 00. Any other digit results in no
action. If the assembler is to be used over this region, it is best
to clear memory so that the assembler will not be confused by random
bytes; alternatively, the editor could be reentered and the edited
region redefined to only that portion which contains the code to be

assembled.

16

Finally the edit mode "command" is entered. Four lines, each
consisting of a 2 byte address followed by two bytes of memory

contents, are shown as follows:

0000 0000
>0002 0000< A
0004 0000
0006 0000

7 0

The mode of the editor is indicated by the command st the lower left
corner of the screen, ?? indicates that the editor is in the command
mode. Other modes are entered by typing a single hexadecimal digit
(from 1 through 9) and pushing the in button. Possible modes are
given in the following list, the ?? in the lower left will be replaced

by the current mode.

?? (command mode)
REPLAce

INSERt

DELETe

GOTO

SCAN Up

SCAN Down

Change address MODE
EXECute

ASSEMble

WoNoonmEwn =0

If 1 is entered and the in button pushed the editor goes into the
replace mode; REPLA appears in place of the ??. Successive two byte
interpreter instructions can now be entered from the keyboard, each
replaces the two bytes contained in memory on the current line and

causes the current line to be incremented by 1.

To change from one command to another you must reenter the

17

command mode. If a full keyboard byte is shown on the screen, enter
00 and hold the in button down for a second, the command mode will be

entered. If a single hex digit shows, enter 0O and push the in button.

Most of the other editor modes are fairly obvious, i.e. insert,
delete,, scan up, scan down, goto, and execute. An insertion occurs
above the current line which remains unchanged. If the current line
is deleted the next line becomes the current line. Scan up and scan
down only continue while the in button is being held down and the goto
instruction requires that a 2 byte address be entered. In the
relative address mode the goto instruction refers to relative
addresses not absolute ones, it changes with the address mode. The
execute mode makes the first command in the edited code the next
instruction to be interpreted and the interpreter executes the code in

the edited region.

The interpretive code is addressed relative to the first
instruction which has the address 0000. If the change address mode
command is invoked, the displayed addresses are changed from absolute
to relative addresses. The current address mode is indicated by a
symbol to the right of the current line, A for absolute addresses and
X for relative addresses. Relative addresses are useful if one wishes
to assemble the interpretive code by hand, the editor itself was
written using earlier versions of the editor which had this feature.
Hand assembly is also necessary for calls to machine code routines and

when using the memory pointer - these instructions are not assembled.

18

The Assembler

The assembler requires the use of labels; these are instructions
which begin with the hexadecimal digit "E". The interpreter ignores
such instructions - they have meaning only for the assembler. As an

example let's redo the display program using labels.

Program Listing
main program

0000 EAAO (EOOO) label reentry pt

0002 41DB waits, read a byte to V1.0
0004 4FFE erase display screen

0006 AAQO sets VA.O to 00

0008 BAOO sets VA.1 to 00

000A FBE2 point VB to display buffer
000C ACOA set VC.0 to 10 (decimal)
000E A232 set V2.0 to 50 (decimal)
0010 EAA1 (EO10) label rentry pt

0012 C15B make ASCII symbol for V1.0
0014 2BBO (201E) call subroutine

0016 5101 increment V1.0

0018 C2E9 decement V2.0, skip unless done

001A 1AAO0 (1000) return to label EAAO
001C 1AA1 (1010) else return to label EAA1

display subroutine

001E EBBO (EO1E) label entry to subroutine

0020 DBAS display symbol in buffer

0022 5A06 add 06 to row display pointer

0024 CCE9 decrement row counter, skip unless full
0026 1BB1 (102A) go to label EBB1 if row full

0028 4000 else return from subroutine

002A EBB1 (E02A) entry point

002C AAOO reset row pointer to 00

002E 6A06 add 06 to line pointer

0030 ACOA reset line counter to 10 (decimal)

0032 4000 return from subroutine

19

Labels, instructions beginning with E, have been placed at all
entry points and at the beginning of the subroutine. The three
hexadecimal digits following the E are used to distinguish labels from

each other.

The listing shows the labels as they appear before assembly; the
digits following the E are chosen arbitrarily. Here I have used
EAA(N) in the main program and EBB(N) in the subroutine. Note that 1
and 2 instructions now refer to labels instead of to addresses. For
example the 2 instruction at address 0014 is now 2BBO and references

the label at the beginning of the subroutine.

Once the program and labels are entered into memory, assembly can
be carried out. From the command mode enter "9" and push the in
button, this places the editor-assembler in assemble mode. A second
push of the in button starts the assembly process. The assembler
first checks for duplicate labels; if one occurs, the assembler stops
on the first occurrence of the duplicate label and returns to the
command mode. Next a check is made for 1 or 2 instructions without a
corresponding label; if one occurs, it becomes the current line and
the command mode is entered. The assembler stops when errors occur so
that they can be corrected. If the first two passes are successful,
the code is assembled; the three least significant digits of the
labels are replaced by their relstive addresses and the 1 and 2
instructions are changed to correspond. The instructions in

parenthesis show the changes that take place on assembly. If assembly

20

is successful, the last line of the edited region is made the current

line and it is surrounded by CK.

There are a number of interesting features to such an assembly
process. The code can be repeatedly assembled without harm, the
assembled code contains valid labels, jumps, and subroutine calls so
that it can be properly reassembled. Thus one can insert new lines of
code, or delete lines of code, or move subroutines to new locations
without entering new labels, just by reassembling the program.
Additional labels or subroutines can be added to already assembled
code at any time, as long as the new labels do not duplicate existing
labels. Once the code has been assembled additional calls to existing
subroutines do have to take account of their new labels. However most
of the work of assembly is done, freeing the programmer to concentrate

on the code.

Machine code subroutine calls (0 instructions), and the
instruction which points a variable to memory (3 instructions), are
not handled by the assembler. This was deliberate, as machine code
subroutines can contain inadvertant E's which would cause errors. In
the same fashion the 3 instructions normally are used to point to
data, which again might contain misleading E's. It seems best to
assemble these instructions by hand as they will not occur often.
They can be placed at the end of the program, the edited region
reassigned before assembly, and the 0 and 3 instructions then

assembled by hand using the relative address mode.

21

Listing 1 058 98 74 B3 12 load to R3
05C 30 4A
Listing of Interpreter
sub. relative addresses
Use of Registers

O5E 00 00 15 high order
RO direct memory access 060 01 01 01 01 addresses, then
R1 interrupt address o064 01 01 01 00 15 low order
R2 stack pointer 068 00 02 00 01
R3 subroutine prog. counter 06C 02 EA E3 06
R4 calling section program 070 D4 CF CE 3B
counter 074 2B 92 FC FB
R5 interpreter prog. counter 078 00 9B 71 O1
R6 X pointer - R(6).1 page
for variables display interrupt routine
R7 Y pointer
R8 base register 07C 00 42 70 C4 standard display
R9 decremented in interrupt G8C 22 78 22 52 interrupt rout.
RA R(A).1 - display page 084 E2 E2 29 9A except R9 is
RB-RF scratch 088 BO F§ 00 AO decremented for
08C 80 E2 E2 20 benefit of
initialize registers, 090 AO E2 20 A0 timing MC
goto control section 094 E2 20 AO 3C routines
098 8C 30 7D
Address Code

display routine
000 F8 01 BS F8 set address 1st
004 00 A5 F8 OE instre. (0100) 09B 47 R7 points
008 BA F8 OF B6 display page(OE) 09C FA 3F F6 F6 originally at
00C 95 B8 85 A8 var., stack page OAO F6 22 52 07T VY.0 - R6 to
010 96 B2 F8 9F (OF) base reg. OA4 27 FE FE FE locations of
014 A2 E3 70 23 R(8), stack add. 0A8 F1 AC 9A BC bytes to

018 93 B4 B1 F§ interrupt add. 0OAC 45 FA OF AA display (VX),
01C 7F A1 F8 23 turn on TV make O0BO 46 AB 06 BB display page is
020 A4 69 D4 R(4) p.c. OBY F8 00 BF 8A obtained from
0B8 32 E1 2A 4B RA.1 - RC is
begin control section OBC BE 07 FA 07 loaded with
0co AE 8E 32 CD display page
023 96 R(4) is p.c. ocy OE F6 BE 9F word address

024 B7 45 BB FE control section 0C8 76 BF 2E 30
c2¢ F6 F6 Fb6 32 R(3) is calling 0CC C1 9E EC F3

02C 4E FC 5D AC p.c., point R6 0DO 5C 02 FB 07

030 9B F9 FO FE at VX.0, R7 at 0oD4 32 DB 1C 9F

034 A6 05 F6 F6 VY.O, R(3) to 0D8 F3 5C 2C 8&C

038 F6 F6 FG FO correct sub., oDC FC 08 AC 3B

03C FE A7 94 BC make R3 p.c. OEO B4 12 D4

c40 EC F4 B3 8C O instructions

oLy FC OF AC CC go to 4E 2 followed by 1 instruc.

048 A3 E2 D3 3C

ouc 23 00 OE3 15 push interp.
OE4 95 22 73 85 p.c. (R5)

0 instruc. (MC calls) OE8 52 25 25 45 to stack -

OEC FA OF 22 73 set interp.

O4E 9B EZ handle MC calls CFO 45 52 §8 F4 p.c. for

050 22 73 U5 52 change rel. add. CFlU A5 12 98 T4 entry point

osu 8& F4 A3 12 to absolute and OF8 E5 12 D4

22

OFB
OFC

100
104

106
108
10C
110
114
118

11B
11C
120
124
128
12C
130
134
138
13C
140
14
148
14C
150
154
158
15C
160
164
168
16C
170
178
178
17C
180
184
188
18C
190

45

42
D4

A6
OF
52
12
56

5E
6A
B
87
BC
3A
07
30
BC
F6
FA
30

45
1B
0c
30
Dy
T4
56
72
15
3A
3B
56
D3
F5
3A

D3

A followed by B instrec.

16
56 D4 00
End of page 00, begin
page 01, 1st 4000 instre.
return from inter. sub.
A5 42 B5 restore interp.
00 p.c. from stack
3 Instruction
F8 EO add contents
25 45 FA of base
22 T3 45 register to
88 F4 56 MMM, load
16 98 74 to VO
12 D4
7 and 8 instructions
5F first 16 bytes
61 64 67 are a table of
73 77 7C entry points
TE 81 84
8B 8F 93 16 bit entry
05 FA 08 is 012B
3A 05 FA
FC 23 AC
58 26 93
05 FA O4 3 bit entry
F6 F6 05 is 013B
08 3A 4B
4D DC 16
22 76 52
FA 07 FC
AC 42 TE
AC E6 07
LA F2 56
F3 56 D4
56 D4 75
D4 F3 3A
30 70 15
15 D4 F3
70 D4 77
70 D4 F2
D3 F3 56
F4 56 D3
56 D2 F3
71 D3 F3
6F D3 F7
00
9 instructions

2

192
194
198
19C
1A0
1AL
148
1AC
1BO
1B4
1B8
1BC
1CO
cy
1C8
1CC

1CE
1D0

D4
1D8
1DC
1EC
1E4
1E8
1EC
1FO
1F4
1F8
1FC

200
204
208
20C
210
214
218
21C
220
224
228
22C
230
234
238

52
AE
5E
45
OE
76
32
OE
Al
F8
18
c2
56
19
30

E6

16
E6

30
D4
70
15
9A

8C
30

16
06
30
06
F8
BE
17
57
E2
3B
OE
FC
1E
18
Dy

96
1E
F8
F6
76
56
19
Fy
07
FF

OE F7

5E
2D
OE

BD

22
BE
F8
09
33
5E
2D
3B
5E
3A
5E

06
8D
TE

o7
86
00
AD
B5
06
8D
Al
30
BD
30
3B
TE
32
5E

begin 5

16 45
F4 56 DU

begin 4

45 A3 26
6C Di 26
DC 37 DE
D8 3F E2
3F E4 30
3F EF 15
37 ED D4
BC F8 FF
F8 00 5C
32 EF 2C
F5 30 FO

ready registers
decide multiply
or divide

multiply starts
at O1A4, divide
at 01B5

on division by
0 quotient and
remainder are
set to FF

and 6 instruc.

instructions

keyboard
instructions,
and erase
display page,
in button
controls

3F MM and

37 MM
instructions

end of page 01
begin page 02, C and F

instructions
45 A3 26 hex to decimal
AF F8 00 routine -
OE 46 AF 8 bit low entry
26 22 52 is 0203, 8 bit
B5 A7 93 high entry is
F8 38 AE 0204, 16 bit

1E F8 00 entry is 020A
E6 UE F5
OE 75 2E
31 52 E6
F5 56 07 table of powers
01 57 30 of ten starts at
LE F6 3B 0239 ends at

12 8F 56 0242

10 27 E8

23C
240
24y
248
2uc
250
254
258
25C
260
264
268
26C
270
274
278
27C
280
284
288
28C
290
294
298
29C
2A0
2AL
2A8
2AC
2BO
2BY
2B6
2BC
2C0
2Cy
2C8
2CC
2D0
2D4
2D§
2bC
2EO
2EY
2ES
2EC
2F0
2F4
2F8
2FC

300

03
00
F8
AD
56
8D
00
BO
F8
A7
BC
08
Fg8
72
1D
32
F6
06
30
56
F&
AT
AD
27
06
DE

00

64
01
EO
07
9D
57
00
30
Cco
93
DC
56
BB
F1
F1
86
AD
FF
B
Dy
A5
17
96
DE
B7
17
07
Fé
FA
30
20
86
A6
17
BO
Co
46
17
87
61
E4
E4
16
26
56
15
16
46
Dy

AT
97
56
F8
F8
F8
96
06
32
D4
98
A8
00

CX43 & CXuy
byte pointed to
by VO to WX
VO = VO + 1

CX56 & CX57
CX5B & CX5C
generate symbols
call sub. pg 03

CX66 & CX67
length of symbol
in display buff.
to VX lo or high
blank is given a
length of O4

FX6A VX to hex
buffer +
pointed to

3 bytes for
benefit of
editor-assembler

FXB3 save VX

FXB9 restore VX

FXC4 hex symbol
FXC8 ASCII
symbol

FXDA pt hex buf
FXDE pt dec buf
FXE2 point to

display buffer

CXE9 & CXEA
dec. skp = 0
FXF3 save base
FXF9 restore
base

end of page 02
begin page 03 display
subroutines and symbols

10 20 88

first 16 bytes

24

304
308
30C
310
315
31A
371F
324
329

34C
351

36F
374
379
37E
383
388
38D
392
397
39C
3A1
346
3AB
3BO
3BY4
3B8
3BC
3c0
3C4
3c8
3cc
300
3D4
308
3DC
3EO0
3E4
3EE
3EC
3FO
3F4
3F8
3FC

A8 50 F8 70
90 AO BO

80
co
46
S5F
5F
88
99
AE
8F
99
88
A9
22
22
53
CF
10
30
00
00
46
5F
21
53
2E
cc
9F
8F
22
9F
9F
80
21
2C
07
F9

DO
3E
57
55
8F
9F
22
88
DB
9F
9F
22
55
52
12
ca
25
00
50
46
AF
22
56
co
00
99
F
AF
8F
9F
80
2C
21
AF
30
33
57
AF
BF
BD
3F
F4
DB
30
AD
A3
32
4D
F6
BA
73
57
00

EO
96
FF
FF
FF
79
97
38

FO
F9
88
F8
B9
22
CcA
yy
99
B9
F1
99
45
22
88
22
00
co
56
FD
00
1
62
60
2C
22
F1
F1
11
F1

are combined to
form symbols

00,01
02,03
04,05
06,07
08,05
0A, OB
0c,0D
OE , OF
10, 11
12,13
14,15
16,17
18,19
1A, 1B
1C, 1D
1E,1F
20,21
22,23
2u,25
26,27
28,29
2A,2B
2c, 2D
2E,ZF
30,31
32,33
34,35
36,37
38,39
3A,3B
3C,3D
3E, 3F

) AN MDD OUZrCrCGIITMOO®™
LK ECDOOXTRHOMO >

4]
je)

*ReH =

oo ENO:
Wl e O~TUTW = NN)+ ~— =223

VA e

entry point to
generate hex
symbols, 03BO
entry for ASCII
symbols, 03CO

Listing 2

Listing of Editor-Assembler

V(0)
V(1)
V(2)

V(3).
V(3).

V)

V().

V(5)
V(6)
V(7))

V(8)
V(9)
V(A)
V(B)
V(F)

Use of Variables in Editor

points to messages
the display pointer

.0 number of symbols to display

in displzy subroutines

1 marker, set if illegal move
or a bad assemble

0 counter in routine to display
current line (abbv. CL)

.0 marker O ordinary keyboard,

1 special keyboard

1 merker O absolute address,

1 relative address
scratch for keyboard subroutine
keyboard bytes are passed in V6
stores starting address of
edited code (abbv. SA)

holds current line (abbv. CL)
holds end line (EL)

points to display buffer
through V(E), scratch

set to 0002, much used constant

To use the editor-assembler

enter at the first location of the
editor-assembler with R3 the program
counter, and locate the interpreter
on the four pages immediately
following the editor-assembler.

Abs.
add.

000
002
ooy
006
008
00A
0oc
OOE
010

012
014
016
018
01A
01C

020

Rel.
add.

000
002
ooy
006
008
00A
0oC
OCE

93 BC
BS F8
06 AC
DC F8
12 A5
9C FC
O4 B3
F8 06
A3 D3

Begin

BF0O
AF02
BU40O
A400
FAE2
U4FFE
326A
A203

machine code to
enter
interpreter at
an address
relative to the
0000 here, i.e.
at 0406 higher
in memory

Main Program

initialize
V(F)=0002
marker=abs. add.
marker=simple key
V(A) to display
erase display

pt. to message

3 letters

25

022
o24
026
028
024
02C
02E
030
032
034
036
038
03A
03C
O3E
040
ou2
ouy
046
048
OuA
04C
O4E
050
052
054
056
058
05A
05C
05E
060
062
064
066
068
06A
06C
06E
070
072
o7y
076
078
07A
Q7C
OT7E
080
082
o84
086
088
C8A
c8cC
08E
€90
092
094

010
012
014
016
018
01A
01C
01E
020
022
024
026
028
02A
02C
02E
030
032
034
036
038
034
03C
O3E
040
ou2
ouy
ou6
048
O4A
04cC
O4E
050
052
054
056
058
05A
05C
05E
060
062
064
066
068
06A
06C
06E
070
072
074
076
078
07A
o7C
07E
0€0
062

2114
2148
8760
8860
A203
2116
2148
8960
8797
1026
1000
A20D
2116
21F8
A50C
7656
2262
4FFE
21C2
2192
02FB
327D
210E
4OED
21F8
A40A
7467
1038
A505
9560
327D
8053
02FB
210E
0377
1038
10AC
10BA
10C8
10D8
10E2
10ES
10F8
1102
2178
86FE
1038
8870
8897
1076
1080
220C
T3FD
1032
8EF3
1070
A502
8870

show S A

keys to V(6)

save as SA

also as CL

3 letters

show END

keys to V(6)

save as EL

skip V7>V9

OK go on

NO start over

13 letters

show CLEAR? C=YES
1 digit to V(6).0
V(5).0 = OC

skp V(6).0=V(5).0
call CLEAR

erase display
show >< A or X
put up CL

erase bot(rentry)
point to ??
display ?7?

wait in off

1 digit to V(6).0
1 more no. instr.
skp V(4).05V(6).0
illegeal, do over
V(5).0 = 05

V5 = V5¥V6

point to 7?7

point to message
erase bottom
show message

go to right sub
to command mode
to REPLACE

to INSERT

to DELETE

to GOTO

to SCAN UP

to SCAN DOWN

to CHANGE MCDE
to EXECUTE
ASSEMBLE (rd dig)
skp V(6).0£0

to command mode
start DL search
skp if CL>SA

go on

done [L search
call check CL

skp loc OK

bad L,to command
add 02 to CL

tack to do more
start NL search
CL = SA

096
098
09A
09C
09E
0AO
0A2
OAlU
0A6
0A8
OAA
0AC
OAE
0BO
0B2
OB4
0B6
OB8
OEA
0BC

0co
0c2
ocu
0cé
0c8
OCA
occ
OCE
(0)]0]
0b2
oD4
0D6
0D8
ODA
0DC
ODE
OEO
OEZ
OE4
OE6
OE8
OEA
CEC
OEE
OFO
OF2
OFlu
OF6
OF8
OFA
CFC
OFE
160
102
104
106
1G8

084
086
088
08A
08C
08E
090
092
094
096
098
09A
09C
0%9E
0AO
0A2
OA4
0AE
0A8
OAA
CAC
OAE
0BO
CR2
OBY4
0B6
0B8
OBA
OBC
OBE

0oc2
oc4
0cé
0c8
OCA
occ
OCE
0DC
0b2
0oD4
0D6
0D8
CDA
0DC
ODE
OEO
OE2
OE4
OE6
OES
OEA
OEC
OEE
OF0
OF2
OF4
OF6

8897
108A
1094
2216
T3FD
1032
88F3
1084
C5E9
109A
1082
8870
8897
10A6
02EE
21C4
1036
2240
88F3
109C
21FE
21E0
T3FE
0339
88F3
2162
10AC
21FE
21E0
T3FE

2258

88F3
2162
10BA
21F8
86FE
1038
21EQ
T3FE
2252
2192
10C8
21FE
TUFD
8673
8860
1032
BEFF
AEFE
10EA
8EFO
2174
86FE
103¢
02EE
&6E3
21BC
10EA

skp CL>SA

go on

chk pass no.

call assemble
skp loc CK

to control, bad
+2 to CL

continue

dec. V(5), skpz0
done, goto fix
back, 2nd pass
success fix labels
skp if CL>SA

go on

erase top screen
show CK

go show CL

call fix

+2 to CL

return till done
REPLACE, read keys
show >< A or X
skp illegal try
do replace

+2 to CL

show new CL

do over

INSERT, read keys
show >< A or X
skp illegal try
do insert

+2 to CL

show new CL

do over

DELETE, read keys
skp unless = 0
returh to control
show >< A or X
skp illegal try
do delete

show new CL

do over

GOTO read keys
skp unless rel add
V(6) = V(B6)+V(T)
CL = V(6)

show new CL

SCAN UP

V(E) = -2

SCAN DOWN

read keyboard
skp unless = 0
goto commend
erase top

CL = CL + V(E)
show new CL
do over

26

10A
10C
10E
110
112
14
116
118
11A
11C
1E

120
122
124
126
128
128

12E
130
132
134
136
138
13A

13C
13E
140
2
14y
146
148
I
14C
14E
150
152
154

156
158
15A
15C
15E
160
162
164

OF8
OFA
OFC
OFE
100
102
104
106
108
10A

10C

1CE
110
112
114
116
18
11A

11E
120
122
124
126
128

124
12C
12E
130
132
134
136
138
13A

13E
140
142

144
146
148
14A
14C
14E
150
152

TUFD CMCDE

10FE jmp to OFE

B402 nmarker,V(6).1=02
64FF mark=mark-1

1032 return to control
21F8 EXECUTE, read keys
86FE skp unless = 0
1038 return to control
4FFE erase display
F7F9 base register=SA
1000 goto SA

End of Main Program
Sub to Show Messages

A205 5 characters
B11B V(1).1 = 1B

1118 go set V(1).0
B1FA entry point
6106 entry point
A10C V(1).0 = 00
FOC8 symbol to show
DA15 display symbol
C267 1length to V(2).1
6201 increment V(2).1
812B V1.0=V1.0+V2.1
C2E9 dec V2.0, skp=0
4000 return

111A else do another

End of Show Messages
Sub to Show Numbers

FBDA VB to hex buffer
A204 4 characters

1134 Jjmp to display
FBDA entry 2 characters
A202 2 characters

FBC4 symbol to show
5105 V1.0=V1.0+05

DA15 display symbol
C2E9 dec, skp unless=0
1140 goto exit

1134 €lse do another
51F6 reset V1.0 for key
4000 return

End of Show Numbers
Keyboard Caller

A11C set display point
B11B set display point
2156 «call first byte
T6EE save in V(6).1
510A add OA to pointer
2156 call second byte
86E§ save in V(6).0
4000 return

166
168
16A
16C
16E
170
172
174
176
178
17A
17C
17E
180
182
184

186
188
18A
18C
18E
190
192
194
196
198
19A
19C
19E
1A0
1A2

1A4
1A6
1A8
1AA
1AC
1AE
1BO
1B2
1BY
1B6
1B6
1BA
1BC
1BE
1C0
1Cz

154
156
158
15A
15C
15E
160
162
164
166
168
16A
16C
16E
170
172

174
176
178
17A
17C
17E
180
182
184
186
188
18A
18C
18E
190

162
194
196
198
19A
19C
19E
1A0
1A2
1A4
1A6
1A8
1AA
1AC
1AE
1BO

End of Keyboard Caller
Keyboard Subroutine

2130
LED8
FEBA
2130
T5E8
LEDS
T5ED
1154
8U4FD
116E
L4OE9
15E
172
0318
115E
4000

show to erase
entry,keys to VE.1
to hex buffer
call display
V5.1=VE.1

keys to VE.1

skp if V5.1=VE.1
else go to erase
skp if V4.0=VF.1
go to MC routine
skp if in on,off
stay in loop
return

special MC keys
stay in loop
return

End of Keyboard Routine
One Digit Keyboard

0308
46D7
€656
A1
B11B
DA15
7560
46D7
7565
1174
40E5
1182
AS0F
7651
4000

erase keys

keys to V6.0

hex symbol to buf
display pointer
display pointer
show one digit
V5.0=v6.0

keys to V6.0

skp if V5.0=V6.0
erase, key pushed
return, skp in on
stay key loop
V5.0=0F
V6.0=v6.0+V5.0
return

End One Digit Keyboard
Display Subroutine

B100 set display point
A304 marker, 4 lines
8C80 VC = CL

8CF4 VC = VC - 02

8CF4 VC = VC - 02

8CF3 VC = VC + 02

FCEA VC + to hex buf
TYFD skp on RA mark
21B4 call RA sub

A100 set display point
212A show 4 symbols
5112 set display point
212C show 4 symbols
6106 point next line
C3E9 4 lines?, return
4000 return

"

+ 0ouwn

1C4
1C6
1c8
1CA
1cC
1CE
1DO
1D2

D4
1D6
D8
1DA
1DC
1DE
1EO
1E2
1EY4
1E6
1E8
1EA
1EC
1EE
1FO

1F2
1FU
1F6
1F8
1FA
1FC
1FE
200
202
204
206
208

20A
20C
20E

210
212

27

1B2
1BY4
1B6
1B8
1BA
1BC
1BE
1CC

1Cc2
1Cc4
1C6
1C8
1CA
1CcC
1CE
1DO
1D2
1D4
1D6
1D8
1DA
1DC
1DE

1EO
1E2
1E4
1E6
1E8
1EA
1EC
1EE
1FO0
1F2
1F4
1F6

1F8
1FA
1FC

1FE
200

119C
8DCO
8D74
0394
4000
21C2
1162
0000

else do another

RA sub, VD=display
VD=VD-SA (RA)

MC, add RA to buf
return

show ><A or X

go to CL

unused

End of Display Routine
Sub to Add >< A or X

32B3
B106
A201
2118
5130
A201
211A
5101
A201
THFD
5001
2114
4000
32B7
11CH

point to ><

set display point
one symbol

show it

set display point
one symbol

show it

set display point
one symbol

skp RA marker
point X if RA
show A or X
return

point to ??

go put it up

End of Routine for ><
Sub Is Command Legal?

02EE
B302
8897
63FF
8787
63FF
T3FE
1FU
21DC
4o00
21C2
4000

MC erase top
V3.1 = 02

skp CL>EL
V3.1=V3.1-01
skp SA>CL
V3.1=V3.1-01
skp if V3.1=0
legal show ><
illegal show ?7?
return

show ><
return

End Legal Check Sub
One Hex Symbol Caller

2174
4OED
4000

call one digit key
wait in off
return

End One Symbol Caller
Erase Keys, Goto Keys

0308
1144

MC, erase keys
goto key caller

End erase keys, etc.

Register Set Utility 264 252 2202 set registers
266 254 0368 MC delete

214 202 8E80 VE=CL 268 256 4000 return
216 204 8D90 VD=EL
218 206 8D84 VD=EL-CL End Delete subroutine
21A 208 O34A MC,RD=VE;RE,RF=VF Insert subroutine
21C 20A 4000 Return
26A 258 8EQ0 VE=EL
End Register Utility 26C 25A 2204 set registers
Sub for Double Label 26E 25C 0358 MC insert
270 25E 0339 MC replace
21E 20C B300 set marker 272 260 4000 return
220 20E 2202 call set register
222 210 02BB MC DL, skips good End Insert Subroutine
224 212 B301 set mark DL found Clear Memory Sub
226 214 4000 return
274 262 8E70 VE=SA
End Double Label Sub 276 264 2204 set registers
Assemble Subroutine 278 266 0384 MC call clear
27A 266 4000 return
228 216 B300 set marker
228 218 8E80 VE=CL End Clear Memory
22C 21A 8D9C VD=EL Begin Messages
22E 21C 8DT4 VD=EL-SA
230 21E 034A MC, set registers 27C Z6A 1320 S(blank)
232 220 03A7 MC, looks for 1,2 27E 26C 0105 AE

234 222 4COO return, no 1 or 2 280 26E OEOY4 ND
236 224 02BB MC no skp found 282 270 030C CL
238 226 8DE6 no skp found self 284 272 0501 EA

234 228 02BC continue MC sub 286 274 1220 R(blank)
23C 22A 122E go set label 288 276 3F20 ?(blank)
23E 22C 123A no, set flag 284 278 033D C=
240 22E 75F6 ? 1st or 2nd pass 28C 27A 1905 YE
242 230 123C 1st return 28E 27C 1320 S(blank)
2uy 232 8ET4 2nd, VE=RA 290 27E 2020 (blank)(blank)
2u6 234 034A call set register 292 280 3F3F 2?72
248 236 03C9 MC set correct RA 294 282 1205 RE
2u4A 238 4000 return 296 284 100C PL
24C 23A B301 bad, set label 298 2&6 0109 AI
2UE 23C 03C6 MC, restore 29A 288 OE13 NS
250 23E 4000 return 2GC 28A 0512 ER
29E 28C 0405 DE
End assemble subroutine 2A0 28E 0CO05 LE
Fix Subroutine 2A2 290 1407 TG
284 292 OF14 0T
252 240 8E60 VE=CL 2A6 294 OF20 0O(blank)
254 242 O34A MC, set registers 2A8 2G6 1303 SC
256 244 03D7 MC look for E ZAA 298 010E AN
256 2u6 L4000 return, no E 2AC 2GA 1513 US
25A 248 QET4 VE=RA 2AE 29C 0301 CA
25C 2uA 8DE0 VD=CL ZB0 29E OEO4 ND
25E 24C O34A set registers 2B2 2A0 030D CM
260 24E 03C9 MC set lzbel 2B4 2A2 OFC4 OD
262 250 4000 return 2B6 2Al4 0505 EE
2B8 2A6 1605 XE
End Fix Subroutine 2BA 2A8 0320 C(blenk)
Delete Subroutine 2BC 2AA 0113 AS
2BE 2AC 1305 SE

28

2C0 2AE ODOF MO
2C2 2BO OBO1 KA
2C4 2B2 183E X>
2C6 2B4 3C01 <A
2C8 2B6 183F X2
2CA 2B8 3F01 2A
2CC 2BA 18 X

End Messages

Machine Code Routine
to look for DL

2CD 2BB 1D
2CE 2BC 8D FA
2DC 2BE FE AD
2b2 2C0 OE FA
2D4 2c2 FO FB
206 2c4 EO EF
2D§ 2C6 32 DE
2DA 2C8 15 15
2DC 2CA D4 2E
2DE 2CC 1F IF
2E0 2CE 2D 2D
2E2 2D0 9D 3A
2E4 2D2 E8 &D
2E6 2D4 32 DA
2EE 2D6 4E F3
2EA 2D8 3A DD
2EC 2DA 1F OE
2EE 2DC F3 2E
2F0 2DE 3A DF
2F2 2EO 2F F8
2F4 2E2 FD A6
2F6 2E4 E6 9F
2F8 2E6 73 &F
2FA 2E8 73 9E
2FC 2EA 73 &E
2FE 2EC 56 D4

machine code to erase
top of display

300 2EE 9A BC
302 2FO F& C9
304 2F2 AC 2C
306 2F4 F8 00
308 2F6 5C 8C
30A CF8 3A 05
30C 2FA D4

machine code to erase
bottom of display

30D 2FB 9A
30E 2FC BC F8
310 2FE C8 AC
312 300 F8 00

29

314 302 5C 1C
316 304 8C 3A
318 306 12 D4

machine code to erase
key displeay

31A 308 GA BC
31C 30A Fg CC
31E 30C AE F9
320 30E 04 AC
322 310 F8 0C
324 312 5C 1E
326 314 8E 3A
328 316 1F DU

special keys,
machine code to
handle keys to commend

324 318 F8 FD
32C 31A A6 3F
32E 31C 39 F8
330 31E 28 A9
332 320 89 32
334 322 3A 37
336 324 32 15
338 326 15 D4
334 328 06 3A
33C 32A 2F 93
33E 32C FF 03
340 32E B5 F8
342 330 4A A5
344 332 12 12
346 334 12 12
348 336 D4 00
34A 338 00

machine code replace

34B 339 F8
34C 33A FO A6
34E 33C 46 AE
350 33E 06 BE
352 340 1E F8
354 342 EC A6
356 344 46 SE
358 346 2E 06
35A 348 SE D4

machine code to set
registers

35C 3H4A F& FA
35E 3HC A6 46
360 34E AD 46
362 350 BD 46
364 352 AE AF

366 354 06 BE 3B2 3A0 AD 96

368 356 BF D4 3B4 3A2 BD DE
3B6 3A4 27 DE
machine code insert 3B8 346 Dy
36A 358 2F 1E main machine code
36C 35A 9D 3A sub for assemble
36E 35C 72 8D
370 35E 32179 3B9 3A7 OE
372 360 OF SE 3BA 3A8 AB FA
374 362 2F 2E 3BC 3AA FO FB
376 364 2D 30 3BE 3AC 10 32
378 366 6C D4 3C0 3AE C6 FB
3C2 3BO 30 32
machine code delete 3C4 3B2 C6 DU
3C6 3B4 15 15
374 368 1F 1F 3C8 3B6 F8 EE
37C 36A 9D 3A 3CA 3B8 A6 L6
37E 36C g2 8D 3CC 3BA AF 06
380 36E 32 88 3CE 3BC BF 2F
382 370 4F 5E 3D0 3BE 2F OE
384 372 1E 2D 3D2 3CO FA OF
386 374 30 7C 3D4 3C2 F9 EO
388 376 D4 3D6 3Cu S5E D4
3D8 3C6 8B 5E
machine code to skip to 3DA 3C8 D4

proper subroutine
machine code assemble

389 377 F8 sets labels and jumps
388 378 EC A6
38C 37A 06 32 3DB 3C9 8B
38E 37C 95 15 3DC 3CA FA FO
390 37E 15 FF 3DE 3CC 5D ED
392 380 01 30 3E0 3CE 9F FA
394 382 8D D4 3E2 3DO OF F1
3E4 3D2 5D 1D
machine code to clear 3E6 3D4 8F 5D
memory 3E8 3D6 D4
396 384 1D 9D machine code fix
398 386 3A 9D (looks for E, skips if
39A 388 8D 32 found, saves in R(B).0
39C 38A A4 F8
39E 38C 00 5E 3E9 3D7 OE
3A0 38E 2D 1E 3EA 3D8 AB FA
3A2 390 30 97 3EC 3DA FO FB
3A4 392 D4 00 3EE 3DC EO 3A
3FO 3DE F3 15
relative address sub 3F2 3EO 15 D4
3F4 3E2 00 00
3A6 394 94 FC 3F6 3E4 00 00
3A8 396 02 BE 3F8 3E6 00 00
3AA 398 F8 A5 3FA 3E8 00 00
3AC 39A AE F8 3FC 3EA CO 00
3AE 39C FB A7 3FE 3EC 00 00

380 39E F8 AC
30

Voo EwWwN =0

?? (command mode)
REPLAce

INSERt

DELETe

GOTO

SCAN Up

SCAN Down

Change address MODE
EXECute

ASSEMble

OMMM
MMM
2MMM
3MMM
4xzz
SXKK
6XKK
7XYZ
8XYZ

do machine code subroutine

point VO to MMM (RA)
keyboard (4000 return sub.)
VX.0 = VX.0 + KK

VX.1 = VX.1 + KK

8 bit arithmetic

16 + 8 bit arithmetic

4000 return from subroutine
4XD7 keys = VX.0

4XD8 keys = VX.1

4XDB keys = VX.0, wait on, off
4XDC keys = VX.1, wait on, off
UXE2 wait on

LXES5 skip in on

4XE9 skip in on, wait off
4XED wait off
LXFE erase display

8-bit one variable
(VX.0 followed by VX.1)

CX03
CXo4

hexidecimal to decimal
conversion

CX43
CXuy

byte pointed to by VO to
VX.0 or VX.1, VO = VO + 1

CX56
CX57 or VX.1 to display buffer
CX5B
CX5C

symbol (ASCII) for VX.O0 or
VX.1 to display buffer

CXE6
CXe7

symbol length in display
buffer to VX.0 or VX.1

CXE9
CXEA

decrement VX.0 or VX.1
skip if result not equal 0

go to MMM (relative address)
do interpretive subroutine (RA)

symbol (hexidecimal) for VX.0

GXYO VX(16) = VX.0 * VY.O
9XY1 VX.0 = VX.G/VY.0, rem. in VX.1
AXKK VX.0 = KK
BXKK VX.1 = KK
CXZZ &-bit one variable inst.
DXYN display, VX = mem. pointer,
VY = display, N = bytes to show
EZZZ 1ignored, labels for assembler
FXZZ 16-bit one variable inst.
7(X.0,Y.0) T(X.1,Y.1)
z YA Result
0 8 X=Y
1 9 X =Xand Y
2 A X=XxorY
3 B X=X+Y
4 Cc X=X-Y
5 D skipif X =Y
6 E skipif X #Y
7 F skip if X > Y
z

z
8(X16,Y16) 8(X.0,Y.1)

FXO0A
FX8A

FXB3
FXB9

FXcy
FXC8
FXDA
FXDE
FXE2

FXF3
FXF9

16-bit one variable
VX to the decimal buffer
VX to the hexidecimal buffer

save VX
restore VX

symbol pointed at to display
buffer (hex), increment VX

symbol pointed at to display
buffer (ASCII), increment VX

point VX to hex buffer
point VX to decimal buffer
point VX to display buffer

save base register in VX
restore base reg. from VX

